Teoremas de comparación para el primer valor propio de Dirichlet y el volúmen de una variedad riemanniana

  1. Lluch Peris, Ana María
Supervised by:
  1. Vicente Miquel Director

Defence university: Universitat de València

Year of defence: 1995

Committee:
  1. Angel Montesinos Amilibia Chair
  2. Olga Gil Medrano Secretary
  3. María Luisa Fernández Rodríguez Committee member
  4. Alfonso Romero Sanabria Committee member
  5. Vicente Cervera Mateu Committee member

Type: Thesis

Teseo: 49292 DIALNET

Abstract

EN ESTA MEMORIA SE OBTIENEN TEOREMAS DE COMPARACION DE INVARIANTES GEOMETRICOS DEFINIDOS EN UNA VARIEDAD DE RIEMANN,DADA M UNA VARIEDAD DE RIEMANN CONEXA Y COMPACTA Y P UNA HIPERSUPERFICIE CONEXA Y COMPACTA DE M DAMOS UN TEOREMA DE COMPARACION PARA EL COCIENTE VOL(P)/VOL(M) ACOTANDO LA CURVATURA DE RICCI DE M POR UNA FUNCION QUE DEPENDE DE LA DISTANCIA A LA HIPERSUPERFICIE P.CUANDO M ES UNA VARIEDAD CON BORDE DIFERENCIABLE ACOTAMOS EL PRIMER VALOR PROPIO DEL PROBLEMA DE VALORES PROPIOS DE DIRICHLET DEFINIDO SOBRE M ACOTANDO LA CURVATURA DE RICCI DE M Y LAS CURVATURAS NORMALES DE M.POR ULTIMO OBTENEMOS TEOREMAS DE COMPARACION DEL VOLUMEN DE UNA BOLA GEODESICA EN UNA VARIEDAD DE RIEMANN CON EL VOLUMEN DE UNA BOLA GEODESICA EN UN ESPACIO PRODUCTO DE FORMAS ESPACIALES.