Algunas propiedades geométricas en variedades casi-producto riemannianas y casi-hermíticas

  1. Hernández Rocamora, Antonio

Universidad de defensa: Universitat de València

Año de defensa: 1987

Tribunal:
  1. Manuel López Pellicer Presidente/a
  2. Vicente Miquel Secretario/a
  3. Agustí Reventós Tarrida Vocal
  4. María Luisa Fernández Rodríguez Vocal
  5. Angel Montesinos Amilibia Vocal

Tipo: Tesis

Teseo: 16151 DIALNET

Resumen

EN ESTA MEMORIA EN PRIMER LUGAR Y HACIENDO USO DE LA FORMULA DE WEITZENBOCK SE ENCUENTRAN RELACIONES LINEALES ENTRE INVARIANTES DE LAS VARIEDADES CASI-PRODUCTO RIEMANNIANAS Y DE LAS VARIEDADES CASI-HERMITICAS Y SE VE QUE EN LAS DISTINTAS CLASES ESTAS RELACIONES IMPLICAN PROPIEDADES GEOMETRICAS EN RELACION CON LA CURVATURA DE LA VARIEDAD, ADEMAS MUCHAS DE ESTAS PROPIEDADES OBTENIDAS PUEDEN CONSIDERARSE COMO OBSTRUCCIONES GEOMETRICAS A LA EXISTENCIA DE CIERTAS ESTRUCTURAS. POR OTRA PARTE SE EXTIENDE A DISTRIBUCIONES EL CONCEPTO DE FOLIACION ARMONICA Y SE OBTIENEN NUEVOS RESULTADOS SOBRE ARMONICIDAD. TAMBIEN SE ESTUDIAN ALGUNOS ASPECTOS DE UNAS VARIEDADES QUE GENERALIZAN TANTO LAS VARIEDADES CASI-PRODUCTO RIEMANNIANAS COMO LAS VARIEDADES CASI-HERMITICAS LAS LLAMADAS (H4=I)-VARIEDADES RIEMANNIANAS.