Bitumen modified with recycled polyurethane foam for employment in hot mix asphalt

  1. Salas, Miguel Ángel
  2. Pérez-Acebo, Heriberto
  3. Calderón, Verónica
  4. Gonzalo-Orden, Hernán
Journal:
Ingeniería e Investigación

ISSN: 0120-5609

Year of publication: 2018

Volume: 38

Issue: 1

Pages: 60-66

Type: Article

DOI: 10.15446/ING.INVESTIG.V38N1.65631 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Ingeniería e Investigación

Abstract

A wide variety of modifiers have been applied to bitumen in order to enhance their properties and performance. Among them, polymers have been mainly used. The aim of this paper is to assess the use of polyurethane foam waste as a bitumen modifier for hot mix asphalts. The polyurethane foam is a by-product of the manufacturing of polyurethane for thermal insulation. From a bitumen with a penetration grade of 50/70, various samples with percentages of waste material in weight ranging from 1% to 5% were produced and tested. Samples with 5% of waste material or more became rough and were refused due to their poor workability. A bituminous mixture with modified bitumen with a 4% of polyurethane was manufactured and compared with a sample with the same aggregates and original bitumen. Results in Marshall test showed that a mix with polymer modified bitumen yielded improvements in stability and a lower deformability. This result suggests that the employment of polyurethane foam waste is a promising bitumen modifier, contributing also to recycle waste materials.

Bibliographic References

  • Adedeji, A., Grünfelder, T., Bates, F. S., Macosko, C. W., Stroup-Gardiner, M., & Newcomb, D.E. (1996). Asphalt modified by SBS triblock copolymer: structures properties. Polymer Engineering & Science, 36(12), 1707–23.
  • Al-Abdul Wahhab, H. I., Dalhat, M. A., & Habib, M. A. (2017). Storage stability and high-temperature performance of asphalt binder modified with recycled plastic. Road Materials and Pavement Design, 18(5), 1117-1134.
  • Airey G. D. (2003). Rheological properties of styrene–butadiene–styrene polymer modified road bitumens. Fuel, 82(14), 1709–19.
  • Arribas, I., Santamaria, A., Ruiz, E., Ortega-López, V., & Manso, J. M. (2015). Electric arc furnace slag and its use in hydraulic concrete. Construction and Building Materials, 90, 68-79.
  • ASTM (2015). ASTM D6927-15. Standard test method for Marshall Stability and flow of asphalt mixtures. West Conshohocken, PA: ASTM International.
  • Bahia, H. U., Hislop, W. P., Zhai, H., & Rangel, A. (1998) Classification of asphalt binders into simple and complex binders. Journal of the Association of Asphalt Paving Technologists, 67, 1–41.
  • Bai, M. (2017). Investigation of low-temperature properties of recycling of aged SBS modified asphalt binder. Construction and Building Materials, 150, 766-773.
  • Carrera, V., Cuadri, A. A., García-Morales, M., & Partal, P. (2015). The development of polyurethane modified bitumen emulsions for cold mix applications. Materials and Structures, 48(10), 3407-3414.
  • CEN (2005). EN 12697-6. Bituminous mixtures - Test methods for hot mix asphalt - Part 6: Determination of bulk density of bituminous specimens. Brussels, Belgium: CEN - European Committee for Standardization
  • CEN (2007a). EN 1426:2007 bitumen and bitminous binders - determination of needle penetration. Brussels, Belgium: CEN-European Committee for Standardization CEN (2007b) EN 1427:2007 bitumen and bitminous binders - determination of the softening point - ring and ball method. Brussels, Belgium: CEN-European Committee for Standardization
  • Chen, M. Z., Lin, J. T., Wu, S. P., & Liu, C. H. (2011) Utilization of recycled brick powder as alternative filler in asphalt mixture. Construction and Building Materials, 25(4), 1532- 1536.
  • Cuadri A.A., García-Morales, M, Navarro F. J., & Partal, P. (2014) Processing of bitumens modified by a bio-oilderived polyurethane. Fuel, 118, 83-90.
  • Dong, X. G., Lei, Q. F., Fang, W. J., & Yu, Q. S. (2005). Thermogavimetric analysis of petroleum asphaltenes along with estimation of average chemical structure by nuclear magnetic resonance spectroscopy. Thermochimica Acta, 427(1), 149–153
  • Fernández-Gómez, W. D., Rondón Quintana, H.,& Reyes Lizcano, F. (2013). A review of asphalt and asphalt mixture aging. Ingeniería e Investigación, 33(1), 5-12.
  • García-Morales, M., Partal, P., Navarro, F. J., Martínez-Boza, F., & Gallegos, C. (2004). Linear Viscoeslasticity of recycled EVA-Modified bitumen. Energy & Fuels, 18, 357-364.
  • García-Travé, G., Tauste, R., Sol-Sánchez, M., MorenoNavarro, F., & Rubio-Gámez, M. C. (2018). Mechanical Performance of SMA Mixtures Manufactured with Reclaimed Geomembrane–Modified Binders. Journal of Materials in Civil Engineering, 30(2), 04017284.
  • Gutiérrez-González, S., Gadea, J., Rodríguez, A., Junco, C., & Calderón, V. (2012). Lightweight plaster materials with enhanced thermal properties made with polyurethane foam wastes. Construction and Building Materials, 28(1), 653-658.
  • Hinislioglu, S, & Agar, E. (2004). Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix, Materials Letters, 58(3), 267-271.
  • Huang, Y., Bird, R. N., & Heidrich, O. (2007). A review of the use of recycled solid waste materials in asphalt pavements. Resources, Conservation and Recycling, 52(1), 58-73.
  • Izquierdo, M. A., Navarro, F. J., Martínez-Boza, F. J., & Gallegos, C. (2012). Bituminous polyurethane foams for building applications: Influence of bitumen hardness. Construction and Building Materials, 30, 706-713.
  • Junco, C., Gadea, J. Rodríguez, A., Gutiérrez-González, S., & Calderón, V. (2012). Durability of lightweight masonry mortars made with White recycled polyurethane foam. Cement and Concrete Composites, 34(10), 1174-1179.
  • Lesueur, D. (2009). The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Advances in Colloid and Interface Science, 145(1), 42–82.
  • Lu, X., & Isacsson, U. (2001). Modification of road bitumens with thermoplastic polymers. Polymer Testing, 20(1), 77–86.
  • Masson, J. F. (2008). Brief review of the chemistry of polyphosphoric acid (PPA) and bitumen. Energy & Fuel, 22(4), 2637–2640.
  • Ministerio de Fomento (2015) Orden FOM/2523/2014, de 12 de diciembre, por La que se actualizan determinados artículos del pliego de prescripciones técnicas generales para obras de carreteras y puentes, relativos a materiales básicos, a firmes y pavimentos, y a señalización, balizamiento y sistemas de contención de vehículo. Art. 542 Mezclas bituminosas en caliente tipo hormigón bituminoso. Gobierno de España, Madrid.
  • Moreno-Navarro, F., Sol-Sánchez, M., Jimenez del Barco, A., & Rubio-Gámez, M. C. (2017). Analysis of the influence of binder properties on the mechanical response of bituminous mixtures. International Journal of Pavement Engineering, 18(1), 73-82.
  • Navarro, F. J., Partal, P., Martínez-Boza, F., & Gallegos, C. (2004) Thermo-rheological behaviour and storage stability of ground tire rubber-modified bitumens. Fuel, 83(14), 2041–2049.
  • Newman, J. K. (1998). Dynamic shear rheological properties of polymer-modified asphalt binders. Journal of Elastomers & Plastics, 30(3), 245–263.
  • Padhan, R. K., & Gupta, A. A. (2018). Preparation and evaluation of waste PET derived polyurethane polymer modified bitumen through in situ polymerization reaction. Construction and Building Materials, 158, 337-345.
  • Pérez I., Toledano, M., Gallego, J., & Taibo, J. (2007). Mechanical properties of hot mix asphalt made with recycled aggregates from reclaimed construction and demolition debris. Materiales de Construcción, 57(285), 17-29.
  • Pérez-Acebo. H., Bejan, S., & Gonzalo-Orden, H. (2017). Transition Probability Matrices for flexible pavement deterioration models with half-year cycle time. International Journal of Civil Engineering. Advance online publication. DOI: 10.1007/s40999-017-0254-z
  • Pérez-Acebo, H., Mindra, N., Railean, A., & Rojí, E. (2017). Rigid pavement performance models by means of Markov Chains with half-year step time. International Journal or Pavement Engineering. Advance online publication. DOI: 10.1080/10298436.2017.1353390
  • Redelius, P. G. (2000). Solubility parameters and bitumen. Fuel, 79(1), 27–35.
  • Rondón-Quintana, H. A., Hernández-Noguera, J. A., & Reyes-Lizcano, J.A. (2015). A review of warm mix asphalt technology: technical, economical and enviromental aspects. Ingeniería e Investigación, 35(3), 5-18.
  • Rondón-Quintana, H. A., Ocampo-Terreros, M. S., VaccaGámez, H. A., Reyes-Lizcano, F. A., Nieto-Mora, J. P., & Beltrán-Cruz, D. P. (2016). The mechanical behavior of two warm-mix asphalts. Ingeniería e Investigación, 36(3), 29–38.
  • Salas, M. A., Gadea, J., Gutiérrez-González, S., Horgnies, M., & Calderón, V. (2016). Recycled polyamide mortars modified with non-ionic surfactant: physical and mechanical strength after durability tests. Materials and Structures, 49(8), 3385-3395.
  • Santamaria, A., Rojí, E., Skaf, M., Marcos, I., & González, J. J. (2016). The use of steelmaking slags and fly ash in structural mortras. Construction and Building Materials, 106, 364-373.
  • Senior-Arrieta, V., & Córdoba-Maquilón, J. E. (2017). Mechanical characterization of porous asphalt mixes with fatty acid amides -FAA-. Ingeniería e Investigación, 37(1), 43-48.
  • Smagulova, N., Kairbekov, Z., Aubakirov, E., & Yermoldina, E. (2012). Production of bitumens from coal sources modified by elementary sulfur. Advanced Materials Research, 535, 1815–1818.
  • Su, N. & Chen, J. S. (2002) Engineering properties of asphalt concrete made with recycled glass. Resources, Conservation and Recycling, 35, 259-274.
  • Tribout, C., & Husson, B. (2010). Use of treated sediments in road building techniques. European Journal of Environmental and Civil Engineering, 1582), 197-213.
  • Vasiljevic-Shikaleska, A., Popovska-Pavlovska, F., Cimmino, S., Duraccio, D., & Silvestre, C. (2010). Viscoelastic properties and morphological characteristics of polymermodified bitumen blends. Journal of Applied Polymer Science, 118(3), 1320–1330.
  • Vila-Cortavitarte, M., Lastra-González, P., Calzada-Pérez, M. A., & Indacoechea-Vega, I. (2018). Analysis of the influence of using recycled polystyrene as a substitute for bitumen in the behaviour of asphalt concrete mixtures. Journal of Cleaner Production, 170, 1279-1287.
  • Wang, K., Yuan, Y., Han, S., & Yang, Y. (2017). Application of FTIR spectroscopy with solvent-cast film and PLS regression for the quantification of SBS content in modified asphalt. International Journal of Pavement Engineering. Advance online publication. DOI: 10.1080/10298436.2017.1413242
  • Wen, Y., Wang, Y., Zhao, K., & Sumalee, A. (2017). The use of natural rubber latex as a renewable and sustainable modifier of asphalt binder. International Journal of Pavement Engineering, 18(6), 547-559.
  • Yousefi, A. A. (2003). Polyethylene dispersions in bitumen: the effects of the polymer structural parameters. Journal of Applied Polymer Science, 90(12),