Desarrollo del sistema nervioso humano. Perspectiva general del estadio prenatal hasta 2013

  1. Rohlfs Domínguez, Paloma
Aldizkaria:
Revista Internacional de Psicología

ISSN: 1818-1023

Argitalpen urtea: 2016

Alea: 15

Zenbakia: 1

Mota: Artikulua

DOI: 10.33670/18181023.V15I01.172 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Beste argitalpen batzuk: Revista Internacional de Psicología

Laburpena

El estudio del origen y desarrollo del sistema nervioso humano es imprescindible para combatir los trastornos del desarrollo y las enfermedades neurodegenerativas. Por esta razón, la presente monografía tiene como objetivo revisar el estado actual de esta cuestión, centrándose específicamente en la fase prenatal de tal desarrollo. De acuerdo con este objetivo, se llevó a cabo una búsqueda electrónica entre 2003 y 2013 de literatura científica publicada en las bases de datos Academic Search Complete, Medline y Science Direct, incluyendo las siguientes palabras clave: desarrollo ontogenético, sistema nervioso humano y fase prenatal. A la luz de esta revisión, se concluye que en el origen y desarrollo prenatal del sistema nervioso humano están implicados toda una serie de eventos ontogenéticos perfectamente orquestados, que tienen lugar desde la fecundación del óvulo hasta el nacimiento del individuo. Estos eventos se pueden presentar de manera sucesiva, o bien de manera superpuesta. Se trata específicamente de los siguientes eventos: transformación del zigoto; neurulación primaria; neurogénesis; migración neuronal; agrupamiento neuronal; sinaptogénesis, mielinización y poda axónica. Además, se concluye que existen al menos dos cuestiones que ya no suscitan debate científico. El primero es sobre el hecho de que el origen y desarrollo prenatal del sistema nervioso humano muestra un patrón estereotipado. El segundo se refiere a que la acción combinada de la influencia externa (medio ambiente) e interna (genética) determina dicho patrón de desarrollo. Finalmente, se recomienda invertir un mayor esfuerzo investigador en el futuro en dilucidar varias cuestiones relativas a la migración neuronal y a la reorganización sináptica posterior a la poda axónica.

Erreferentzia bibliografikoak

  • Ahrens, E.T., Blumenthal, J., Jacobs, R.E., y Giedd, J.N. (2000). Imaging Brain Development. En A.W. Toga, y J.C. Mazziota (Eds.), Brain mapping: the systems (pp.561-589). San Diego: Academic Press.
  • Almeida, R.G., y Lyons, D.A. (2014). On the resemblance of synapse formation and CNS myelination. Neuroscience, 276, 98-108. doi: 10.1016/j.neuroscience.2013.08.062.
  • Arias-Carrión, O., Olivares-Bañuelos, T., y Drucker-Colín R. (2007). Neurogénesis en el cerebro adulto. Revista de Neurología, 44(9), 541-50.
  • Ascano, M., Bodmer, D., y Kuruvilla, R. (2012). Endocytic trafficking of neurotrophins in neural development. Trends in Cell Biology, 22(5), 266-273. doi: 10.1016/j.tcb.2012.02.005.
  • Ashwell, K.W.S. y Mai, J.K. (2012). Fetal development of the central nervous system. En J.K. Mai y G. Paxinos (Eds.). The human nervous system (pp. 31-79). San Diego: Elsevier. doi: 10.1016/B978-0-12-374236-0.10003-3.
  • Ayala, R., Shu, T., y Tsai, L.H. (2007). Trekking across the brain: the journey of neuronal migration. Cell, 12(1), 29-43.
  • Beane, W.S., Gross, J.M., y McClay, D.R. (2006). RhoA regulates initiation of invagination, but not convergent extension, during sea urchin gastrulation. Developmental Biology, 292(1), 213-225.
  • Bédard, A., y Parent, A. (2004). Evidence of newly generated neurons in the human olfactory bulb. Developmental Brain Research, 151(1-2), 159-168.
  • Becker, E.B.E., y Bonni A. (2004). Cell cycle regulation of neuronal apoptosis in development and disease. Progress in Neurobiology, 72(1), 1-25.
  • Beltz, B.S., y Sandeman, D.C. (2003). Regulation of life-long neurogenesis in the decapod crustacean brain. Arthropod Structure and Development, 32(1), 39-60.
  • Belvindrah, R., Nissant, A., y Lledo, P.M. (2011). Abnormal neuronal migration changes the fate of developing neurons in the postnatal olfactory bulb. Journal of Neuroscience, 31(20), 7551-7562. doi:10.1523/JNEUROSCI.6716-10.2011.
  • Benson, M.D., Romero, M.I., Lush, M.L., Lu, Q.R., Henkemeyer, M., y Parada, L.F. (2005). Ephrin-B3 is a myelin-based inhibitor of neurite outgrowth. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10694-10699.
  • Betters, E., Liu, Y., Kjaeldgaard, A., Sunström, E., y García-Castro, M.I. (2010). Analysis of early human neural crest development. Developmental Biology, 344(2), 578-592. doi: 10.1016/j.ydbio.2010.05.012.
  • Bishop, D.L., Misgeld, T., Walsh, M.K., Gan, W.B., y Lichtman, J.W. (2004). Axon branch removal at developing synapses by axosome shedding. Neuron, 44(4), 651-661.
  • Blakemore, S.J. y Choudhury S. (2006). Development of the adolescent brain: implications for executive function and social cognition. Journal of Child Psychology and Psychiatry, 2006; 47: 296-312.
  • Blakemore, S.J. (2012). Imaging brain development: the adolescent brain. Neuroimage, 61(2), 397-406.
  • Buss, R.R., Sun, W., y Oppenheim RW. (2006). Adaptative roles of programmed cell death during nervous system development. Annual Review Neuroscience, 29, 1-35.
  • Caldwell, J.H. (2009). Action potential initiation and conduction in axons. En L.R. Squire (Ed.), The encyclopedia of neuroscience (pp. 23-29). San Diego: Academic Press.
  • Calver, A.R., Hall, A.C., Yu, W.P., Walsh, F.S., Heath, J.K., Betsholtz C., et al. (1998) Oligodendrocyte population dynamics and the role of PDGF in vivo. Neuron, 20(5), 869-882.
  • Capilla González, A., y Pérez Hernández E. Desarrollo cerebral y cognitivo (2008). En F. Maestú Uturbe, M. Ríos Lago, y R. Cabestrero (Eds.). Neuroimagen: técnicas y procesos cognitivos (pp. 469-490). Barcelona: Elsevier Doyma, S.L.
  • Casey, B.C., Galvan, A., y Hare TA (2005). Changes in cerebral functional organization during cognitive development. Current Opinion in Neurobiology,15(2), 239-244.
  • Cavada, C. (1998). Desarrollo del sistema nervioso central. En S. Segovia, y A. Guillamón (Eds.), Psicobiología del desarrollo (pp. 17-30). Barcelona: Ariel, S.A.
  • Cayre, M., Canoll, P., y Godman, J.E. (2009). Cell migration in the normal and pathological postnatal mammalian brain. Progress in Neurobiology, 88(1), 41-63. doi: 10.1016/j.pneurobio.2009.02.001.
  • Chuva de Sousa Lopes, S.M. y Mummery, Ch.L. (2009). Differentiation in Early Development. En R. Lanza, J. Gearhart, B. Hogan, D. Melton, R. Pedersen, E. Donnall Thomas, J. Thompson y L. Wilmut (Eds.). Essentials of Stem Cell Biology. San Diego: Academic Press.
  • Cohen, S., y Levy-Montalcini, R. (1956). A nerve growth-stimulating factor isolated from snake venom. Proceedings of the National Academy of Sciences of the United States of America, 42(9), 571-574.
  • Comana, I., Barbina, G., Charlesa, P., Zalc, B., y Lubetzki, C. (2005). Axonal signals in central nervous system myelination, demyelination and remyelination. Journal of Neurological Sciences, 233(1-2), 67-71.
  • Corr, P.J. (2008). Psicología biológica. México, DF: McGraw-Hill Interamericana. Cheng, X., Tiyaboonchai, A., y Gaude, P. (2013). Endodermal stem cell populations derived from pluripotent stem cells. Current Opinion in Cell Biology, 25(2), 2 65-271.
  • De Graaf-Peters, V.B., y Hadders-Algra M. (2006). Ontogeny of the human central nervous system: What is happening when? Early Human Development, 82(4), 257-266.
  • Dickinson, D.P., Machnicki, M., Ali, M.M., Zhang, Z., y Sohal GS. (2004). Ventrally emigrating neural tube (VENT) cells: a second neural tube-derived cell population. Journal of Anatomy, 205(2), 79-98.
  • Dicou, E. (2009). Neurotrophins and neuronal migration in the developing rodent brain. Brain Research Reviews, 60(2), 408-417. doi: 10.1016/j.brainresrev.2009.03.001.
  • Fields, R.D. (2004). Volume transmission in activity-dependent regulation of myelinating glia. Neurochemistry International, 45(4), 503-509.
  • Gallo, G. (2013). Mechanisms underlying the initiation and dynamics of neuronal filopodia: from neurite formation to synaptogenesis. International Review of Cell and Mololecular Biology, 301, 95-156. doi: 10.1016/B978-0-12-407704-1.00003-8.
  • Girard, N., Confort-Gouny, S., Schneider, J., Barberet, M., Chapon, F., Viola, A., et al. (2007). MR imaging of brain maturation. Journal of Neuroradiology, 34(5), 290-310.
  • Giraud, A.L., y Lee HJ. (2007). Predicting cochlear implant outcome from brain organisation in the deaf. Restorative Neurology and Neuroscience, 25(3-4), 1-9.
  • Gogate, N., Giedd, J., Janson, K., y Rapoport JL. (2001). Brain imaging in normal and abnormal brain development: new perspectives for child psychiatry. Clinical Neuroscience Research, 1(4), 283-290. doi:10.1016/S1566-2772(01)00014-7.
  • Gogtay, N. (2008). Cortical brain development in schizophrenia: insights from neuroimaging studies in childhood-onset schizophrenia. Schizophrenia Bulletin, 34(1), 30-36. doi:10.1093/schbul/sbm103.
  • Gogtay, N., Giedd,. J.N., Lusk, L., Hayashi, K.M., Greenstein, D., y Catherine Vaituzis, A, et al. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 8174-9179. doi: 10.1073/pnas.0402680101.
  • Goldberg, J.L. (2004). Intrinsic neuronal regulation of axon and dendrite growth. Current Opinion in Neurobiology, 14(5), 551-557.
  • Gupton, S.L., y Waterman-Storer CM. (2006). Spatiotemporal feedback between actomyosin and focal-adhesion systems optimizes rapid cell migration. Cell, 125(7), 1223-1225.
  • Hao, M.M., Bornstein, J.C., Vanden Berghe, P., Lomax, A.E., Young, H.M. y Foong, J.P.P. (2013). The emergence of neural activity and its role in the development of the enteric nervous system. Developmental Biology, 382(1), 365-74. doi: 10.1016/j.ydbio.2012.12.006.
  • Hardin, J. (2005a). Echinoderms-Cleavage. Introduction. URL: http://worms.zoology.wisc.edu/dd2/echino/cleavage/intro.html [28.06.2013].
  • Hardin, J. (2005b). Echinoderms - Gastrulation. Introduction. URL: http://worms.zoology.wisc.edu/dd2/echino/gast/intro.html [28.06.2013].
  • Huttenlocher, P.R. (1979). Synaptic density in human frontal cortex-developmental changes and effects of aging. Brain Research, 163(2), 195-205. doi:10.1016/0006-8993(79)90349-4.
  • Hatten, M.E. (2002). New Directions in neuronal migration. Science, 297(5587), 1660-1663.
  • Herschkowitz, N., Kagan, J., y Zilles K. (1997). Neurobiological bases of behavioral development in the first year. Neuropediatrics, 28(6), 296-306.
  • Hill, MA. Stage 11 sem21.jpg. 2013a. URL: http://php.med.unsw.edu.au/embryology/index.php?title=Stage11_sem21.jpg [08.07.2013].
  • Hill MA. Stage 13 sem1c.jpg. 2013b. URL: http://php.med.unsw.edu.au/embryology/index.php?title=Stage13_sem1.jpg [08.07.2013].
  • Huang, X., y Saint-Jeannet, J.P. (2004). Induction of the neural crest and the opportunities of life on the edge. Developmental Biology, 275(1), 1-11.
  • Hubka, P. (2006). Neural network plasticity, BDNF and behavioral interventions in Alzheimer's disease. Bratislava Medical Journal, 107(9-10), 395-401.
  • Huttenlocher, P.R. (1979). Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Research, 163(2), 195-205. doi:10.1016/0006-8993(79)90349-4.
  • Huttenlocher, P.R., De Courten, C., Garey, L.J., y Van der Loos H. (1982). Synaptogenesis in human visual cortex: evidence for synapse elimination during normal development. Neuroscience Letters, 33(3), 247-252. doi:10.1016/0304-3940(82)90379-2.
  • Ishibashi, T., Dakin, K.A., Stevens, B., Lee, P.R., Kozlov, S.V., Stewart, C.L., y Fields, R.D. (2006). Astrocytes promote myelination in response to electrical impulses. Neuron, 49(6), 823-832.
  • Jiménez del Río, M., y Vélez Pardo, C. (2001). La apoptosis en las enfermedades neurodegenerativas: evidencias y controversias. Revista de Neurología, 32(9), 851-860.
  • Kalat, J.W. (2004). Psicología biológica. Madrid: Wadsworth.
  • Kantor, D.B., y Kolodkin, A.L. (2003). Curbing the excesses of youth: molecular insights into axonal pruning. Neuron, 38(6), 849-852. doi:10.1016/S0896-6273(03)00364-7.
  • Kiernan, J.A., y Rajakumar, R.B. (2013). The human nervous system. An anatomical viewpoint. Baltimore: Lippincott Williams y Wilkins.
  • Kim, Y.J., Bao, H., Bonanno, L., Zhang, B. y, Serpe M. (2012). Drosophila Neto is essential for clustering glutamate receptors at the neuromuscular junction. Gene Development, 26(9), 974-987. doi: 10.1101/gad.185165.111.
  • Kim, Y.J., y Serpe, M. (2013). Building a synapse: a complex matter. Fly (Austin), 7(3), 1-7. doi: 10.4161/fly.24413.
  • Kinameri, E., y Matsuoka I. (2003). Autocrine action of BMP2 regulates expression of GDNF-mRNA in sciatic Schwann cells. Brain research. Molecular brain research, 117(2), 221-227.
  • Koirala, S., y Chien-Ping, P. (2004). Pruning an axon piece by piece: a new mode of synapse elimination. Neuron, 44(4), 578-580.
  • Kondo, T., y Raff, M.C. (2004). A role for Noggin in the development of oligodendrocyte precursor cells. Developmental Biology, 267(1), 242-251.
  • Kostovic, I., Lukinovic, N., Judas, M., Bognadovic, N., Mrzljak, L., Zecevic, N. et al. (1989). Structural basis of the developmental plasticity in the human cerebral cortex: the role of the transient subplate zone. Metabolic Brain Disease, 4(1), 17-23.
  • Kostovic, I., y Rakic, P. (1990). Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. Journal of Comparative Neurology, 297(3), 1441–1470. DOI: 10.1002/cne.902970309.
  • Kriegstein, A.R., y Noctor, S.C. (2004). Patterns of neuronal migration in the embryonic cortex. Trends in Neurosciences, 27(7), 392-399. doi:10.1016/j.tins.2004.05.001.
  • Kriegstein, A., y Álvarez-Buylla, A. (2009). The glial nature of embryonic and adult neural stem cells radial glial cells. Annual Review of Neuroscience, 32, 149-184. doi: 10.1146/annurev.neuro.051508.135600.
  • Le Douarin, N.M., y Dupin, E. (2003). Multipotentiality of the neural crest. Current Opinion in Genetics and Development, 13(5), 529-536.
  • Lebel, C., Walker, L., Leemans, A., y Beaulieu, P.C. (2008). Microstructural maturation of the human brain from childhood to adulthood. Neuroimage, 40(3), 1044-5. doi: 10.1016/j.neuroimage.2007.12.053.
  • Lenroot, R.K., y Giedd, J.N. (2006). Brain development in children and adolescence: Insights from anatomical magnetic resonance imaging. Neuroscience and Biobehavioral Review, 30, 718-729. doi:10.1016/j.neubiorev.2006.06.001.
  • Lewis, T.L., y Maurer, D. (2005). Multiple sensitive periods in human visual development: evidence from visually deprived children. Developmental Psychobiology, 46(3), 2977-2986.
  • Lim, Y., y Golden, J.A. (2007). Pattering the developing diencephalon. Brain Research Reviews, 53(1), 17-26.
  • Liu, J., Dietz, K., DeLoyht, J.M., Pedre, X., Kelkar, D., Kaur J., et al. (2012). Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nature Neuroscience, 15, 1621-3. doi:10.1038/nn.3263.
  • Long, F. (2012). Prenatal bone development. En F.H. Glorieux, J.M. Pettifor, Y H. Jüppner (Eds.), Pediatric bone. Biology and diseases (pp. 39-54). San Diego: Academic Press.
  • Lossi, L., Alasia, S., Salio, Ch., y Merigui, A. (2009). Cell death and proliferation in acute slices and organotypic cultures of mammalian CNS. Progress in Neurobiology, 88(4), 221-245. doi: 10.1016/j.pneurobio.2009.01.002.
  • Lossi, L., Cantile, C., Tamagno, I. y Merighi A. (2005). Apoptosis in the mammalian CNS: Lessons from animal models. Veterinary Journal, 170(1), 52-66.
  • Lossi, L., y Merighi, A. (2003). In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS. Progress in Neurobiology, 69(5), 287-312.
  • Lu, L.H., Leonard, C.M., Thompson, P.M., Kan, E., Jolley, J., y Welcome, S.E., et al. (2007). Normal developmental changes in inferior frontal grey matter are associated with improvement in phonological processing: a longitudinal MRI analysis. Cerebral Cortex, 17(5), 1092-1099.
  • Lüer, K., y Technau, G.M. (2009). Single cell cultures of Drosophila neuroectodermal and mesectodermal central nervous system progenitors reveal different degrees of developmental autonomy. Neural Development, 4(30), 1-16. doi:10.1186/1749-8104-4-30.
  • Luskin, M.B. (1993). Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron, 1(1), 173-189.
  • Makinodan, M., Rosen, K.M., Ito, S., y Corfas, G. (2012). A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science, 337(6100), 1357-1360. DOI: 10.1126/science.1220845.
  • Mancheño Maciá, E., y Giménez Ribotta, M. (2005). ¿Es posible la reparación del cerebro? Mente y Cerebro, 15, 34-38.
  • Maor-Nof, M. y Yaron, A. (2013). Neurite pruning and neuronal cell death: spatial regulation of shared destruction programs. Current Opinion in Neurobiology, 23 (6), 900-906. doi: 10.1016/j.conb.2013.06.007.
  • Marin-Padilla, M. (1997). Developmental neuropathology and impact of perinatal brain damage I and II. Journal of neuropathology and experimental neurology, 56(3), 219-235.
  • Marin, O., y Rubenstein, J.L. (2003). Cell migration in the forebrain. Annual Review of Neuroscience, 26, 441-483.
  • Métin, C.H., Vallee, R.B., Rakic, P., y Bhide, P.G. (2008). Modes and mishaps of neuronal migration in the mammalian brain. The Journal of Neuroscience, 28(46), 11746-11752. doi:10.1523/JNEUROSCI.3860-08.2008.
  • Milet, C., y Monsoro-Burg, A.H. (2012). Neural crest induction at the neural plate border in vertebrates. Developmental Biology, 366(1), 22-33.
  • Moreau-Fauvarque, C., Kumanogoh, A., Camand, E., Jaillard, C., Barbin, G., Boquet, I., et al. (2003). The transmembrane Semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion. The Journal of neuroscience: the official journal of the Society for Neuroscience, 23(27), 9229-9239.
  • Mori, T., Takumi, K., Shimizu, K., Oishi, T., y Hayashi, M. (2006). Heterogeneity of the developmental patterns of neurotrophin protein levels among neocortical areas of macaque monkeys. Experimental Brain Research, 171(1), 129-138.
  • Ndubaku, U., y De Bellard, M.E. (2008). Glial cells: Old cells with new twists. Acta histochemica, 110(3), 182-195. Doi: 10.1016/j.acthis.2007.10.003.
  • Nordeen, K.W., y Nordeen, E.J. (2004). Synaptic and molecular mechanisms regulating plasticity during early learning. Annals of the New York Academy of Sciences, 1016, 416-437.
  • Parnavelas, J.G. (2000). The origin and migration of cortical neurones: new vsitas. Trends in Neurosciences, 23(3), 126-131.
  • Pedersen, B.K., Pedersen, M., Krabbe, K.S., Bruunsgaard, H., Matthews, V.B., y Febbraio, M.A. (2009). Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Experimental Physiology, 94(12), 1153-1160. doi: 10.1113/expphysiol.2009.048561.
  • Pinel, J.P.J. (2007). Biopsicología. Madrid: Pearson Educación. Rakic, S., y Zecevic, N. (2000). Programmed cell death in the developing human telencephalon. European Journal of Neuroscience, 12(8), 2721-2734.
  • Rao, A.A. (2013). Views and opinion on BDNF as a target for diabetic cognitive dysfunction. Bioinformation, 9(11), 551-554.
  • Ramón y Cajal, S. (1890). Sobre la aparición de las expansiones celulares en la médula embrionaria. Gaceta Sanitaria, 12, 413 9.
  • Rapoport, J.L., y Gogtay, N. (2008). Brain neuroplasticity in healthy, hyperactive and psychotic children: insights from neuroimaging. Neuropsychopharmacology, 33, 181-197. Doi:10.1038/sj.npp.1301553.
  • Richardson, W.D., Pringle, N., Mosley, M.J., Westermark, B., y Dubois-Dalcq, M. (1988). A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell, 53(2), 309-319.
  • Rivkin, M.J. (2000). Developmental neuroimaging of children using magnetic resonance techniques. Mental Retardation and Developmental Disabilities, 6(1), 68-80.
  • Rohlfs Domínguez, P. Factores determinantes del consumo infantil de verduras. [Determinant factors of child vegetable consumption]. Tesis doctoral. Granada: Universidad de Granada; 2010.
  • Rohlfs Domínguez, P. (2011). The study of postnatal and later development of the taste and olfactory systems using the human brain mapping approach: an update. Brain Research Bulletin, 84, 118-124.
  • Rösner, H., Möller, W., Wassermann, T., Mihatsch, J., y Blum, M. (2007). Attenuation of actinomyosinII contractile activity in growth cones accelerates filopodia-guided and microtubule-based neurite elongation. Brain Research, 1176, 1-10.
  • Rossi, F., Gianola, S., y Corvetti, L. (2007). Regulation of intrinsic neuronal properties for axon growth and regeneration. Progress in Neurobiology, 81(1), 1-28.
  • Sadler, T.W. (2009). Embriología médica: con orientación clínica. Buenos Aires: Editorial Médica Panamericana.
  • Saxena, S., y Caroni, P. (2007). Mechanisms of axon degeneration: From development to disease. Progress in Neurobiology, 83(3), 174-191.
  • Semple, B.D., Blomgren, K., Gimlin, K., Ferriero, D.M., y Noble-Haeusslein, L.J. (2013). Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Progress in Neurobiology, 106-107, 1-16. Doi: 10.1016/j.pneurobio.2013.04.001.
  • Snell, R.S. (2007). Neuroanatomía clínica. Buenos Aires: Editorial Médica Panamericana.
  • Snyder, J.S., Hong, N.S., McDonald, R.J., y Wojtowicz, J.M. (2005). A role for adult neurogenesis in spatial long-term memory. Neurosciences, 130(4), 843-52.
  • Snyder, J.S., Kee, N., y Wojtowicz, J.M. (2001). Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. Journal of Neurophysiology, 85(6), 2423-2431.
  • Sowell, E.R., Peterson, B.S., Thompson, P.M., Welcome, S.E., Henkenius, A.L., y Toga, A.W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6(3), 309-315.
  • Sowell, E.R., Thompson, P.M., Tessner, K.D., y Toga, A.W. (2001). Mapping continued brain growth and gray matter density reduction in dorsal frontal cortex: inverse relationships during postadolescent brain maturation. The Journal of neuroscience : the official journal of the Society for Neuroscience, 21(22), 8819-8829.
  • Staveley BE. Neural crest cells. In BIOL 2013. URL: http://www.mun.ca/biology/desmid/brian/BIOL3530/DEVO_05/ch05f17.jpg [08.07.2013].
  • Strelchenko, N., y Verlinsky, Y. (2006). Embryonic stem cells from morula. Methods in Enzymology, 418, 93-108.
  • Su, Z., y He, H. (2010). Olfactory ensheathing cells: Biology in neural development and regeneration. Progress in Neurobiology, 92(4), 517-532. Doi: 10.1016/j.pneurobio.2010.08.008.
  • The Cochrane Collaboration (2013). Cochrane reviews. URL: http://www.cochrane.org/cochrane-reviews [26.09.2013].
  • Winseck, A.K., Caldero, J., Ciutat, D., Prevette, D., Scott, S.A., Wang G, et al. (2002). In vivo analysis of Schwann cell programmed cell death in the embryonic chick: regulation by axons and glial growth factor. The Journal of neuroscience : the official journal of the Society for Neuroscience, 22(11), 4509-4521.
  • Whitaker-Azmitia, P. M. (2010). Serotonin and Development. En R. Menzel y P.R. Benjamin (Eds.). Handbook of Behavioral Neuroscience (309-323). San Diego: Academic Press.
  • Yang, I., Lewis, R., y Miller, R.H. (2011). Interactions between oligodendrocyte precursors control the onset of CNS myelination. Developmental, 350(1), 127-138. Doi: 10.1016/j.ydbio.2010.11.028.
  • Yao, J.K., Windebank, A.J., Poduslo, J.F., y Yoshino, J.E. (1990). Axonal regulation of Schwann cell glycolipid biosynthesis. Neurochemical Research, 15(3), 279-282.
  • Yeo, W., y Gautier, J. (2004). Early neural cell death: dying to become neurons. Developmental Biology, 274(2), 233-244.
  • Zatorre, R.J., Fields, R.D., y Johansen-Berg, H. (2012). Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nature Neuroscience, 15, 528-536. Doi:10.1038/nn.3045.