Modelos de colas con incertidumbre
- María Belén Castro Iñigo Director/a
- David de la Fuente García Director/a
Universidad de defensa: Universidad de Oviedo
Fecha de defensa: 19 de enero de 2007
- Pedro Ángel Gil Álvarez Presidente/a
- Francisco Javier Puente García Secretario/a
- Esteban Fernández Sánchez Vocal
- Enrique López González Vocal
- José Ángel Olivas Varela Vocal
Tipo: Tesis
Resumen
Un capítulo importante de la Organización de Empresas es la parte dedicada a la Teoría de Colas o Líneas de Espera cuyo origen se encuentra en 1909, con el trabajo que desarrolló el matemático danés Erlang para paliar los problemas de congestión de redes telefónicas que padecía la compañía telefónica de Copenhague, Cuando la Economía en general, y la Teoría de Colas en particular, trata con problemas reales, a menudo se encuentran datos poco conocidos. La aplicación a los modelos reales de los resultados teóricos para por el ajuste de dichos datos tomados mediante muestreo a distribuciones perfectamente especificadas, para las llegadas y servicios, y la posterior utilización de modelos tipificados. En la práctica, esta metodología se encuentra con diferentes problemas: toda de datos impracticable para algunas de las medias que intervine en el modelo: datos cuyo comportamiento siguen distribuciones no especificadas, por lo que los modelos teóricos son inviables; resultados analíticos que no reportan soluciones explícitas tratables desde un punto de vista práctico, etc. Para subsanar estos problemas que surgen en la aplicación de la Teoría de colas, se pueden asignar valores precisos a los datos desconocidos o funciones que aparecen en los sistemas, o se puede intentar buscar una alternativa a la modernización de esta incertidumbre. Esto último es el objetivo fundamental que se pretende conseguir con esta tesis doctoral, para lo que se ha elegido la Teoría de los Subconjuntos Borrosos como marco para desarrollar el mismo. Así, se va a considerar que, en numerosas ocasiones, la naturaleza de la incertidumbre que aparecen los modelos de colas esposiblista más que probabilista. De esta forma, se pretende adaptar los modelos clásicos existentes para datos precisos a modelos fuzzy con datos borrosos, intentando que, aún a mayor coste teórico, los resultados que se obtengan sena más apropiados desde el punto de vista práctico. Cree