Mejora de la Potencia Obtenida en Plantas de Generación Undimotriz basadas en Columna de Agua Oscilante

  1. Lekube, Jon
  2. Garrido, Aitor J.
  3. Garrido, Izaskun
  4. Otaola, Erlantz
Revista:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Año de publicación: 2018

Volumen: 15

Número: 2

Páginas: 145-155

Tipo: Artículo

DOI: 10.4995/RIAI.2017.8831 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Revista iberoamericana de automática e informática industrial ( RIAI )

Resumen

Las centrales de aprovechamiento de la energía proveniente de las olas, y particularmente los dispositivos de columna de agua oscilante, resultan una alternativa factible para reducir la dependencia de los combustibles fósiles y frenar el creciente problema del calentamiento global. Así, los nuevos esquemas de control pueden jugar un papel importante a la hora de aportar mejoras de rendimiento y competir de igual a igual desde un punto de vista comercial con las fuentes de energía tradicionales. En este sentido, el presente artículo propone un nuevo método de control basado en el seguimiento de la curva de máxima potencia, mediante el establecimiento de los valores óptimos de los coeficientes de flujo y de par que permiten maximizar la potencia generada en cada instante. El esquema de control ha sido implementado sobre un modelo completo desde la ola hasta la red de potencia a fin de demostrar la viabilidad del método propuesto y la bondad de sus resultados.

Referencias bibliográficas

  • Alberdi, M., Amundarain, M., Garrido, A.J., Garrido, I., Casquero, O., De la Sen, M., 2011. Complementary control of oscillating water column-based wave energy conversion plants to improve the instantaneous power output. IEEE Transactions on Energy Conversion 26, 1021–1032. https://doi.org/10.1109/TEC.2011.2167332
  • Amon, A., Brekken, K.A., Schacher, A., 2012. Maximum power point tracking for ocean wave energy conversion. IEEE Transactions on Industry Applications 48, 1079–1086. https://doi.org/10.1109/TIA.2012.2190255
  • Amundarain, M., Alberdi, M., Garrido, A.J., Garrido, I., 2009. Neural control of the Wells turbine-generator module. Proceedings of the IEEE Conference on Decision and Control, 7315–7320.
  • Amundarain, M., Alberdi, M., Garrido, A.J., Garrido, I., 2011. Modeling and Simulation of Wave Energy Generation Plants: Output Power Control. IEEE Transactions on Industrial Electronics 58, 105–117. https://doi.org/10.1109/TIE.2010.2047827
  • Bailey, H., Robertson, B.R.D., Buckham, B.J., 2016. Wave-to-wire simulation of a floating oscillating water column wave energy converter. Ocean Engineering 125, 248–260. https://doi.org/10.1016/j.oceaneng.2016.08.017
  • Correia da Fonseca, F.X., Gomes, R.P.F., Henriques, J.C.C., Gato, L.M.C., Falcao, A.F.O., 2016. Model testing of an oscillating water column spar-buoy wave energy converter isolated and in array: Motions and mooring forces. Energy 112, 1207–1218. https://doi.org/10.1016/j.energy.2016.07.007
  • Cui, Y., Hyun, B., 2016. Numerical study on Wells turbine with penetrating blade tip treatments for wave energy conversion. International Journal of Naval Architecture and Ocean Engineering 8, 456–465. https://doi.org/10.1016/j.ijnaoe.2016.05.009
  • Delmonte, N., Barater, D., Giuliani, F., Cova, P., Buticchi, G., 2016. Review of oscillating wáter column converters. IEEE Transactions on Industry Applications 52, 1698–1710.
  • Falcao, A.F.D.O., 2002. Control of an oscillating-water-column wave power plant for máximum energy production. Applied Ocean Research 24, 73–82. https://doi.org/10.1016/S0141-1187(02)00021-4
  • Garcia, E., Correcher, A., Quiles, E., Morant, F., 2016. Recursos y sistemas energéticos renovables de entorno marino y sus requerimientos de control. Revista Iberoamericana de Automática e Informática industrial 13, 141–161. https://doi.org/10.1016/j.riai.2016.03.002
  • Garrido, A.J., Garrido, I., Alberdi, M., Amundarain, M., Barambones, O., Romero, J.A., 2013. Robust control of oscillating water column (OWC) devices: power generation improvement. Proceedings of the OCEANS–San Diego, 1–4.
  • Garrido, I., Garrido, A.J., Alberdi, M., Amundarain, M., Barambones, O., 2013. Performance of an ocean energy conversion system with DFIG sensorless control. Mathematical Problems in Engineering 2013. https://doi.org/10.1155/2013/260514
  • Garrido, I., Garrido, A.J., Sevillano, M.G., Romero, J.A., 2012. Robust sliding mode control for tokamaks. Mathematical Problems in Engineering 2012. https://doi.org/10.1155/2012/341405
  • Garrido, A.J., Garrido, I., Amundarain, M., Alberdi, M., De la Sen, M., 2012. Sliding-mode control of wave power generation plants. IEEE Transactions on Industry Applications 48, 2372–2381. https://doi.org/10.1109/TIA.2012.2227096
  • Garrido, A.J., Otaola, E., Garrido, I., Lekube, J., Maseda, F.J., Liria, P., Mader, J., 2015. Mathematical modeling of oscillating water columns wave-structure interaction in ocean energy plants. Mathematical Problems in Engineering 2015. https://doi.org/10.1155/2015/727982
  • Lekube, J., Garrido, A.J., Garrido, I., 2017. Rotational speed optimization in oscillating water column wave power plants based on maximum power point tracking. IEEE Transactions on Automation Science and Engineering 14, 681–691. https://doi.org/10.1109/TASE.2016.2596579
  • Le Roux, J.P., 2008. An extension of the Airy theory for linear waves into shallow water. Coastal Engineering 55, 295–301. https://doi.org/10.1016/j.coastaleng.2007.11.003
  • López, A., Somolinos, J.A., Nú-ez, L.R., 2014. Modelado energético de convertidores primarios para el aprovechamiento de las energías renovables marinas. Revista Iberoamericana de Automática e Informática Industrial 11, 224–235. https://doi.org/10.1016/j.riai.2014.02.005
  • Marei, M.I., Mokhtar, M., El-Sattar, A.A., 2015. MPPT strategy based on speed control for ASW-based wave energy conversion system. Renewable Energy 83, 305–317. https://doi.org/10.1016/j.renene.2015.04.039
  • Murakami, T., Imai, Y., Nagata, S., Takao, M., Setoguchi, T., 2016. Experimental research on primary and secondary conversion efficiencies in an oscillating water column-type wave energy converter. Sustainability 8, 756–766. https://doi.org/10.3390/su8080756
  • Murari, A.L.L.F., Sguarezi Filho, A.J., Torrico Altuna, J.A., Jacomini, R.V., 2016. Una introducción al ajuste de parámetros de controladores PI utilizados en el control del generador de inducción con rotor bobinado. Revista Iberoamericana de Automática e Informatica Industrial 13, 15–21. https://doi.org/10.1016/j.riai.2015.11.001
  • M'zoughi, F., Bouallègue, S., Ayadi, M., 2015. Modeling and SIL Simulation of an oscillating water column for ocean energy conversion. International Renewable Energy Congress (IREC). https://doi.org/10.1109/IREC.2015.7110880
  • Rusu, E., Onea, F., 2016. Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands. Renewable Energy 85, 687–703. https://doi.org/10.1016/j.renene.2015.07.042
  • Rusu, E., Onea, F., 2015. Assessment of the performances of various wave energy converters along the European continental coasts. Energy 82, 889–904. https://doi.org/10.1016/j.energy.2015.01.099
  • Sameti, M., Farahi, E., 2014. Output power for an oscillating water column wave energy conversion device. Ocean and Environmental Fluid Research 1, 27–34.
  • Sevillano, M.G., Garrido, I., Garrido, A.J., 2011. Control-oriented automatic system for transport analysis (ASTRA)-Matlab integration for Tokamaks. Energy 36, 2812–2819. https://doi.org/10.1016/j.energy.2011.02.022
  • Torre-Enciso, Y., Marqués, J., López de Aguileta, L.I., 2010. Mutriku. Lessons learnt. 3rd International Conference on Ocean Energy.
  • Uihlein, A., Magagna, D., 2016. Wave and tidal current energy – A review of the current state of research beyond technology. Renewable and Sustainable Energy Reviews 58, 1070–1081. https://doi.org/10.1016/j.rser.2015.12.284
  • Veigas, M., López, M., Romillo, P., Carballo, R., Castro, A., Iglesias, G., 2015. A proposed wave farm on the Galician coast. Energy Conversion and Management 99, 102–111. https://doi.org/10.1016/j.enconman.2015.04.033