Combining genetic algorithms and the finite element method to improve steel industrial processes
- Sanz-García, A. 1
- Pernía-Espinoza, A.V. 1
- Fernández-Martínez, R. 1
- Martínez-De-Pisón-Ascacíbar, F.J. 1
-
1
Universidad de La Rioja
info
ISSN: 1570-8683
Año de publicación: 2012
Volumen: 10
Número: 4
Páginas: 298-308
Tipo: Artículo
Otras publicaciones en: Journal of Applied Logic
Resumen
Most of the times the optimal control of steel industrial processes is a very complicated task because of the elevated number of parameters to adjust. For that reason, in steel plants, engineers must estimate the best values of the operational parameters of processes, and sometimes, it is also necessary to obtain the appropriate model for steel material behaviour. This article deals with three successful experiences gained from genetic algorithms and the finite element method in order to solve engineering optimisation problems. On one hand, a fully automated method for determining the best material behaviour laws is described, and on the other hand we present a common methodology to find the most appropriate settings for two cases of improvement in steel industrial processes. The study of the three reported cases allowed us to show the reliability and effectiveness of combining both techniques. © 2012 Elsevier B.V.