JENS
SIEWERT
VISITANTE IKERBASQUE
University of Regensburg
Ratisbona, AlemaniaPublikationen in Zusammenarbeit mit Forschern von University of Regensburg (51)
2024
-
Correlation constraints and the Bloch geometry of two qubits
Physical Review A, Vol. 109, Núm. 1
2021
2020
-
Dimensionally sharp inequalities for the linear entropy
Linear Algebra and Its Applications, Vol. 584, pp. 294-325
-
Joint Schmidt-type decomposition for two bipartite pure quantum states
Physical Review A, Vol. 101, Núm. 2
-
Maximum N-body correlations do not in general imply genuine multipartite entanglement
Quantum, Vol. 4
2018
-
Bounds on absolutely maximally entangled states from shadow inequalities, and the quantum MacWilliams identity
Journal of Physics A: Mathematical and Theoretical, Vol. 51, Núm. 17
-
Distribution of entanglement and correlations in all finite dimensions
Quantum, Vol. 2
-
Exponentially many entanglement and correlation constraints for multipartite quantum states
Physical Review A, Vol. 98, Núm. 5
2016
-
Quantifying Entanglement of Maximal Dimension in Bipartite Mixed States
Physical Review Letters, Vol. 117, Núm. 19
-
Quantitative bound entanglement in two-qutrit states
Physical Review A, Vol. 94, Núm. 2
-
Thermoelectric efficiency in the linear transport regime
Physica Status Solidi (A) Applications and Materials Science, Vol. 213, Núm. 3, pp. 626-634
2015
-
Monogamy equalities for qubit entanglement from Lorentz invariance
Physical Review Letters, Vol. 114, Núm. 14
-
Partial transposition as a direct link between concurrence and negativity
Physical Review A - Atomic, Molecular, and Optical Physics, Vol. 91, Núm. 3
2014
-
Heat bath can generate all classes of three-qubit entanglement
Physical Review A - Atomic, Molecular, and Optical Physics, Vol. 89, Núm. 6
-
Practical method to obtain a lower bound to the three-tangle
Physical Review A - Atomic, Molecular, and Optical Physics, Vol. 89, Núm. 2
-
Quantifying entanglement resources
Journal of Physics A: Mathematical and Theoretical, Vol. 47, Núm. 42
2013
-
Negativity as an estimator of entanglement dimension
Physical Review Letters, Vol. 111, Núm. 10
-
Optimal class-specific witnesses for three-qubit entanglement from Greenberger-Horne-Zeilinger symmetry
Quantum Information and Computation, Vol. 13, Núm. 3-4, pp. 0210-0220
2012
-
A quantitative witness for Greenberger-Horne-Zeilinger entanglement
Scientific Reports, Vol. 2
-
Entanglement of three-qubit Greenberger-Horne-Zeilinger-symmetric states
Physical Review Letters, Vol. 108, Núm. 2