Characterization of Injectable Smart Hydrogels
- Gil-Cabrerizo, P. 13
- Del Campo-Montoya, R. 13
- Sancho, A. 2
- Aldazabal, J. 12
- Paredes, J. 12
- Blanco-Prieto, M. J. 35
- Garbayo, E. 34
- 1 bNavarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain
- 2 cTecnun, School of Engineering, University of Navarra, C/Manuel de Lardizábal 15, 20018 San Sebastián, Spain
- 3 aDepartment of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, C/Irunlarrea 1, 31008 Pamplona, Spain
- 4 bNavarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain egarbayo@unav.es
- 5 bNavarra Institute for Health Research, IdiSNA, C/Irunlarrea 3, 31008 Pamplona, Spain mjblanco@unav.es
Book:
Injectable Smart Hydrogels for Biomedical Applications
ISBN: 9781837671700, 9781837671700
Year of publication: 2024
Pages: 62-95
Type: Book chapter
Bibliographic References
- Guvendiren, (2012), Soft Matter, 8, pp. 260, 10.1039/C1SM06513K
- Correa, (2021), Chem. Rev., 121, pp. 11385, 10.1021/acs.chemrev.0c01177
- Yan, (2010), Chem. Soc. Rev., 39, pp. 3528, 10.1039/b919449p
- Moud, (2021), Colloids Surf., A, 609, pp. 125577, 10.1016/j.colsurfa.2020.125577
- Steele, (2019), Adv. Healthcare Mater., 8, pp. 1801147, 10.1002/adhm.201801147
- Fan, (2021), Int. J. Biol. Macromol., 193, pp. 2202, 10.1016/j.ijbiomac.2021.11.051
- De France, (2020), ACS Appl. Polym. Mater., 2, pp. 1016, 10.1021/acsapm.9b00981
- Sathaye, (2015), Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol., 7, pp. 34
- Torres-ortega, (2022), Biomacromolecules, 23, pp. 4629, 10.1021/acs.biomac.2c00853
- Chen, (2017), ACS Biomater. Sci. Eng., 3, pp. 3146, 10.1021/acsbiomaterials.7b00734
- Cai, (2019), Biomater. Sci., 7, pp. 3143, 10.1039/C9BM00298G
- Pérez-Rafael, (2021), Acta Biomater., 134, pp. 131, 10.1016/j.actbio.2021.07.020
- Roth, (2020), ACS Cent. Sci., 6, pp. 1800, 10.1021/acscentsci.0c00732
- Yesilyurt, (2016), Adv. Mater., 28, pp. 86, 10.1002/adma.201502902
- Yu, (2020), Int. J. Pharm., 578, pp. 119075, 10.1016/j.ijpharm.2020.119075
- Hafeez, (2018), Gels, 4, pp. 85, 10.3390/gels4040085
- Kontomaris, (2020), Mater. Res. Express, 7, pp. 33001, 10.1088/2053-1591/ab79ce
- Lai, (2019), Extrem. Mech. Lett., 31, pp. 100540, 10.1016/j.eml.2019.100540
- Binnig, (1986), Phys. Rev. Lett., 56, pp. 930, 10.1103/PhysRevLett.56.930
- Dufrêne, (2021), Cell. Microbiol., 23, pp. e13324, 10.1111/cmi.13324
- Tang, (2018), J. Mech. Behav. Biomed. Mater., 78, pp. 496, 10.1016/j.jmbbm.2017.10.035
- Collinson, (2021), Prog. Polym. Sci., 119, pp. 101420, 10.1016/j.progpolymsci.2021.101420
- Shewan, (2021), Soft Matter, 17, pp. 5073, 10.1039/D0SM01624A
- Hertz, (1881), Journal für die reine und angewandte Mathematik, 92, pp. 156
- Sneddon, (1965), Int. J. Eng. Sci., 3, pp. 47, 10.1016/0020-7225(65)90019-4
- Kohn, (2013), J. Mech. Behav. Biomed. Mater., 20, pp. 316, 10.1016/j.jmbbm.2013.02.002
- Joshi, (2022), Polymers, 14, pp. 1267, 10.3390/polym14061267
- Suriano, (2014), Appl. Surf. Sci., 311, pp. 558, 10.1016/j.apsusc.2014.05.108
- Zemła, (2020), Eur. Biophys. J., 49, pp. 485, 10.1007/s00249-020-01456-7
- Nguyen, (2019), Ultramicroscopy, 202, pp. 1, 10.1016/j.ultramic.2019.03.012
- Kulkarni, (2023), Ageing Res. Rev., 84, pp. 101816, 10.1016/j.arr.2022.101816
- Kontomaris, (2022), Micron, 155, pp. 103228, 10.1016/j.micron.2022.103228
- Hui, (2019), Biomacromolecules, 20, pp. 4126, 10.1021/acs.biomac.9b00965
- Cuenot, (2022), J. Mech. Behav. Biomed. Mater., 133, pp. 105343, 10.1016/j.jmbbm.2022.105343
- Efremov, (2020), Sci. Rep., 10, pp. 13302, 10.1038/s41598-020-70361-y
- Efremov, (2020), Soft Matter, 16, pp. 64, 10.1039/C9SM01020C
- Garcia, (2020), Chem. Soc. Rev., 49, pp. 5850, 10.1039/D0CS00318B
- Heris, (2012), Macromol. Biosci., 12, pp. 202, 10.1002/mabi.201100335
- Barakat, (2017), Sci. Rep., 7, pp. 9910, 10.1038/s41598-017-10032-7
- Belman-Flores, (2020), J. Mater. Sci.: Mater. Med., 31, pp. 61
- Liu, (2016), Cellulose, 23, pp. 3129, 10.1007/s10570-016-1038-3
- Murphy, (2010), Biomaterials, 31, pp. 461, 10.1016/j.biomaterials.2009.09.063
- Martinez-Garcia, (2022), Gels, 8, pp. 535, 10.3390/gels8090535
- Schnabel-Lubovsky, (2019), J. Tissue Eng. Regener. Med., 13, pp. 587, 10.1002/term.2813
- Goldberg, (2023), Scanning Electron Microscopy in Cell Biology, pp. 16
- Singh, (2017), Pet. Sci., 14, pp. 765, 10.1007/s12182-017-0185-y
- Merryweather, (2023), J. Microsc., 290, pp. 40, 10.1111/jmi.13174
- Çolak, (2019), Nanoscale, 11, pp. 11596, 10.1039/C9NR01784D
- Hsiong, (2008), Macromol. Biosci., 8, pp. 469, 10.1002/mabi.200700313
- Dufrêne, (2008), Nat. Rev. Microbiol., 6, pp. 674, 10.1038/nrmicro1948
- Akbarzadeh Solbu, (2022), Carbohydr. Polym., 276, pp. 118804, 10.1016/j.carbpol.2021.118804
- Yan-Yan, (2020), Colloids Surf., B, 193, pp. 111099, 10.1016/j.colsurfb.2020.111099
- Kiyama, (2023), Adv. Mater., 35, pp. 2208902, 10.1002/adma.202208902
- Hamngren Blomqvist, (2017), Micron, 100, pp. 91, 10.1016/j.micron.2017.04.012
- Ercius, (2015), Adv. Mater., 27, pp. 5638, 10.1002/adma.201501015
- Chen, (2010), Tissue Eng., Part C, 17, pp. 101, 10.1089/ten.tec.2010.0072
- Babakhanova, (2023), J. Biomed. Mater. Res., Part A, 111, pp. 1279, 10.1002/jbm.a.37528
- Mohabatpour, (2022), J. Funct. Biomater., 13, pp. 71, 10.3390/jfb13020071
- Zhang, (2018), Int. J. Biol. Macromol., 114, pp. 381, 10.1016/j.ijbiomac.2018.03.106
- Peters, (2021), Regener. Biomater., 8, pp. rbab060, 10.1093/rb/rbab060
- Kang, (2014), J. Controlled Release, 175, pp. 10, 10.1016/j.jconrel.2013.12.002
- Del Campo-Montoya, (2022), Expert Opin. Drug Delivery, 19, pp. 1521, 10.1080/17425247.2022.2136161
- Kong, (2004), Adv. Mater., 16, pp. 1917, 10.1002/adma.200400014
- Knipe, (2015), Biomacromolecules, 16, pp. 962, 10.1021/bm501871a
- Tamada, (1993), Proc. Natl. Acad. Sci. U. S. A., 90, pp. 552, 10.1073/pnas.90.2.552
- Wu, (2021), Biomacromolecules, 22, pp. 4489, 10.1021/acs.biomac.1c00719
- Madl, (2018), ACS Macro Lett., 7, pp. 1302, 10.1021/acsmacrolett.8b00664
- Meyvis, (2000), Macromolecules, 33, pp. 4717, 10.1021/ma992131u
- Caliari, (2016), Nat. Methods, 13, pp. 405, 10.1038/nmeth.3839
- Saeednia, (2019), ACS Omega, 4, pp. 4040, 10.1021/acsomega.8b03212
- Nicolas, (2020), Biomacromolecules, 21, pp. 1968, 10.1021/acs.biomac.0c00045
- Lutolf, (2003), Proc. Natl. Acad. Sci. U. S. A., 100, pp. 5413, 10.1073/pnas.0737381100
- Mann, (2018), Biomater. Sci., 6, pp. 10, 10.1039/C7BM00780A
- Appel, (2012), Biomaterials, 33, pp. 4646, 10.1016/j.biomaterials.2012.02.030
- Narayanaswamy, (2019), Molecules, 24, pp. 603, 10.3390/molecules24030603
- Li, (2016), Nat. Rev. Mater., 1, pp. 16071, 10.1038/natrevmats.2016.71
- Appel, (2015), Nat. Commun., 6, pp. 6295, 10.1038/ncomms7295
- Fenton, (2019), Biomacromolecules, 20, pp. 4430, 10.1021/acs.biomac.9b01129
- Buwalda, (2017), Biomacromolecules, 18, pp. 316, 10.1021/acs.biomac.6b01604
- Hunt, (2021), Adv. Funct. Mater., 31, pp. 2105301, 10.1002/adfm.202105301
- Korsmeyer, (1983), Int. J. Pharm., 15, pp. 25, 10.1016/0378-5173(83)90064-9
- Koetting, (2015), Mater. Sci. Eng., R, 93, pp. 1, 10.1016/j.mser.2015.04.001
- Saludas, (2017), Int. J. Pharm., 523, pp. 454, 10.1016/j.ijpharm.2016.10.061
- Gil-Cabrerizo, (2022), Int. J. Pharm., 629, pp. 122356, 10.1016/j.ijpharm.2022.122356
- Sánchez-Cid, (2022), Polymers, 14, pp. 3023, 10.3390/polym14153023
- Madduma-Bandarage, (2021), J. Appl. Polym. Sci., 138, pp. 50376, 10.1002/app.50376
- Khalili, (2015), Int. J. Mol. Sci., 16, pp. 18149, 10.3390/ijms160818149
- Jansen, (2015), Biochim. Biophys. Acta, Mol. Cell Res., 1853, pp. 3043, 10.1016/j.bbamcr.2015.05.007
- Handorf, (2015), Organogenesis, 11, pp. 1, 10.1080/15476278.2015.1019687
- Paltanea, (2023), Int. J. Mol. Sci., 24, pp. 4312, 10.3390/ijms24054312
- Chen, (2022), Int. J. Biol. Macromol., 216, pp. 686, 10.1016/j.ijbiomac.2022.07.019
- Wang, (2018), Angew. Chem., Int. Ed., 57, pp. 9008, 10.1002/anie.201804400
- Lam, (2014), Adv. Funct. Mater., 24, pp. 7053, 10.1002/adfm.201401483
- Yang, (2021), Adv. Sci., 8, pp. 2003627, 10.1002/advs.202003627