Optimización de trayectorias y estabilización LQR para robot aéreo omnidireccional

  1. del Río Berasategui, Josu 1
  2. Iriarte Arrese , Imanol 1
  3. Vilchez Hipolito, Litzia Carla 1
  4. Lasa Aguirrebengoa, Joseba 1
  5. Lazkano Ortega, Elena 2
  6. Rodriguez Rodriguez, Igor 2
  1. 1 Tecnalia, Basque Research and Technology Alliance (BRTA)
  2. 2 Universidad del Pa´ıs Vasco (UPV-EHU)
Revue:
Jornadas de Automática
  1. Cruz Martín, Ana María (coord.)
  2. Arévalo Espejo, V. (coord.)
  3. Fernández Lozano, Juan Jesús (coord.)

ISSN: 3045-4093

Année de publication: 2024

Número: 45

Type: Article

DOI: 10.17979/JA-CEA.2024.45.10816 DIALNET GOOGLE SCHOLAR lock_openAccès ouvert editor

Résumé

In this work, we address the path planning for an omnidirectional aerial robot. The drone’s architecture consists of 4 qua-drotors connected with omnidirectional joints to a central body, allowing the system to rotate 360º in all three axes while the quadrotors maintain stability. As an overactuated system, it can reach from position or state A to B through multiple rutes.Therefore, of the various possible routes, it is important to generate those that meet optimality criteria, thereby reducing system consumption. In this article, we propose a solution to generate trajectories that meet certain optimality criteria and satisfy system constraints. The problem is solved using the direct collocation optimization method, and the generated trajectory is subsequently used as input to a control loop that stabilizes along the trajectory using a finite-time LQR controller. The work was validated by simulations.

Références bibliographiques

  • Gasparetto, A., Boscariol, P., Lanzutti, A., Vidoni, R., 2015. Path planning and trajectory planning algorithms: A general overview. Motion and Operation Planning of Robotic Systems: Background and Practical Approaches, 3–27. DOI: 10.1007/978-3-319-14705-5 DOI: https://doi.org/10.1007/978-3-319-14705-5_1
  • Gonçalves, R. S., Souza, F. C., Homma, R. Z., Sudbrack, D. E. T., Trautmann, P. V., Clasen, B. C., 2022. Robots for inspection and maintenance of power transmission lines. In: Robot Design: From Theory to Service Applications. Springer, pp. 119–142. DOI: 10.1007/978-3-031-11128-0 DOI: https://doi.org/10.1007/978-3-031-11128-0_6
  • Gugan, G., Haque, A., 2023. Path planning for autonomous drones: Challenges and future directions. Drones 7 (3), 169. DOI: 10.3390/drones7030169 DOI: https://doi.org/10.3390/drones7030169
  • Iriarte, I., Iglesias, I., Lasa, J., Calvo-Soraluze, H., Sierra, B., 2021. Enhancing vtol multirotor performance with a passive rotor tilting mechanism. IEEE Access 9, 64368–64380. DOI: 10.1109/ACCESS.2021.3075113 DOI: https://doi.org/10.1109/ACCESS.2021.3075113
  • Iriarte, I., Otaola, E., Culla, D., Iglesias, I., Lasa, J., Sierra, B., 2020. Modeling and control of an overactuated aerial vehicle with four tiltable quadrotors attached by means of passive universal joints. In: 2020 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, pp. 1748–1756. DOI: 10.1109/ICUAS48674.2020.9213848 DOI: https://doi.org/10.1109/ICUAS48674.2020.9213848
  • Kondo, K., Tagliabue, A., Cai, X., Tewari, C., Garcia, O., Espitia-Alvarez, M., How, J. P., 2024. Cgd: Constraint-guided diffusion policies for uav trajectory planning. arXiv preprint arXiv:2405.01758. DOI: 10.48550/arXiv.2405.01758
  • Kong, F., Li, J., Jiang, B., Wang, H., Song, H., 2023. Trajectory optimization for drone logistics delivery via attention-based pointer network. IEEE Transactions on Intelligent Transportation Systems 24 (4), 4519–4531. DOI: 10.1109/TITS.2022.3168987 DOI: https://doi.org/10.1109/TITS.2022.3168987
  • Park, S., Her, J., Kim, J., Lee, D., 2016. Design, modeling and control of omni-directional aerial robot. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp. 1570–1575. DOI: 10.1109/IROS.2016.7759254 DOI: https://doi.org/10.1109/IROS.2016.7759254
  • Pitas, I., 2021. Drone vision and deep learning for infrastructure inspection. In: 2021 IEEE International Conference on Autonomous Systems (ICAS). IEEE. DOI: 10.1109/ICAS49788.2021.9551136 DOI: https://doi.org/10.1109/ICAS49788.2021.9551136
  • Ramalepa, L. P., Jamisola Jr, R. S., 2021. A review on cooperative robotic arms with mobile or drones bases. International Journal of Automation and Computing 18 (4), 536–555. DOI: 10.1007/s11633-021-1299-7 DOI: https://doi.org/10.1007/s11633-021-1299-7
  • Rodrigo, R. H., Patiño, D. H., 2015. Numerical solution to uncertainties in the finite time optimal control systems design. In: 2015 XVI Workshop on Information Processing and Control (RPIC). IEEE, pp. 1–5. DOI: 10.1109/RPIC.2015.7497169 DOI: https://doi.org/10.1109/RPIC.2015.7497169
  • Saeed, R. A., Omri, M., Abdel-Khalek, S., Ali, E. S., Alotaibi, M. F., 2022. Optimal path planning for drones based on swarm intelligence algorithm. Neural Computing and Applications 34 (12), 10133–10155. DOI: 0.1007/s00521-022-06998-9 DOI: https://doi.org/10.1007/s00521-022-06998-9
  • Szász, R., Allenspach, M., Han, M., Tognon, M., Katzschmann, R. K., 2022. Modeling and control of an omnidirectional micro aerial vehicle equipped with a soft robotic arm. In: 2022 IEEE 5th International Conference on Soft Robotics (RoboSoft). IEEE, pp. 01–08. DOI: 10.1109/RoboSoft54090.2022.9762161 DOI: https://doi.org/10.1109/RoboSoft54090.2022.9762161
  • Tedrake, R., 2019. Model-based design and verification for robotics. URL: https://drake.mit.edu/
  • Tedrake, R., 2023. Underactuated Robotics. URL: https://underactuated.csail.mit.edu