Biomechanical differences between hip thrust and glute bridge for hip extensors

  1. Zabaleta-Korta, Aitor 1
  2. Fernández-Peña, Eneko 1
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

Zeitschrift:
Cultura, ciencia y deporte

ISSN: 1696-5043

Datum der Publikation: 2024

Ausgabe: 19

Nummer: 59

Seiten: 81-88

Art: Artikel

DOI: 10.12800/CCD.V19I59.2084 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Andere Publikationen in: Cultura, ciencia y deporte

Zusammenfassung

The aim of this study was to compare the biomechanical characteristics of two similar exercises used to strengthen hip extensors: the Hip Thrust and the Glute Bridge. Ten resistance-trained participants were recruited and performed 3 repetitions of each exercise in a randomized order at 80% of their one repetition maximum of the Hip Thrust. Kinematic and kinetic variables were assessed. We found significant differences between the Hip Thrust and Glute Bridge for the concentric phase in time (0.8 ± 0.14 s vs. 0.58 ± 0.07 s), vertical displacement (35.65 ± 3.4 cm vs. 15.45 ± 4.82 cm), total displacement (39.36 ± 4.03 cm vs. 19.22 ± 5.63 cm), displacement vector magnitude (36.68 ± 3.51 cm vs. 17.84 ± 5.42 cm), displacement vector angle (102.18 ± 6.32 deg vs. 61.79 ± 11.08 deg), vertical positive impulse (1315.28 ± 300.34 Ns vs. 940.65 ± 93.59 Ns), and total impulse (1422.11 ± 321.59 Ns vs. 1024.02 ± 105.48 Ns). These results suggest that the Hip Thrust is better suited for sports that require the application of strength from smaller hip angles or higher ranges of motion, and the Glute Bridge allows a higher force application close to the hip lockout.

Bibliographische Referenzen

  • Balsalobre-Fernández, C., Marchante, D., Muñoz-López, M., & Jiménez, S. L. (2018). Validity and reliability of a novel iPhone app for the measurement of barbell velocity and 1RM on the bench-press exercise. Journal of Sports Sciences, 36(1), 64–70. https://doi.org/10.1080/02640414.2017.1280610
  • Bezodis, I., Brazil, A., Palmer, J., & Needham, L. (2017). Hip Joint Kinetics During the Barbell Hip Thrust. 35th Conference of International Society of Biomechanics in Sport, Cologne, Germany. https://commons.nmu.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1197&context=isbs
  • Brazil, A., Needham, L., Palmer, J. L., & Bezodis, I. N. (2021). A comprehensive biomechanical analysis of the barbell hip thrust. PLoS ONE, 16(3), 1–14. https://doi.org/10.1371/journal.pone.0249307
  • Brughelli, M., Cronin, J., & Chaouachi, A. (2011). Effects of running velocity on running kinetics and kinematics. Journal of Strength and Conditioning Research, 25(4), 933–939. https://doi.org/10.1519/jsc.0b013e3181c64308
  • Cahalan, T. D., Johnson, M. E., Liu, S., & Chao, E. Y. S. (1989). Quantitative measurements of hip strength in different age groups. Clinical Orthopaedics and Related Research, 246, 136–145. https://doi.org/10.1097/00003086-198909000-00022
  • Comfort, P., Bullock, N., & Pearson, S. J. (2012). A comparison of maximal squat strength and 5-, 10-, and 20-meter sprint times, in athletes and recreationally trained men. Journal of Strength & Conditioning Research, 26(4), 937–940. https://doi.org/10.1519/jsc.0b013e31822e5889
  • Contreras, B., Cronin, J., & Schoenfeld, B. (2011). Barbell hip thrust. Strength and Conditioning Journal, 33(5), 58–61. https://doi.org/10.1519/ssc.0b013e31822fa09d
  • Contreras, B., Vigotsky, A. D., Schoenfeld, B. J., Beardsley, C., & Cronin, J. (2016). A comparison of gluteus maximus, biceps femoris, and vastus lateralis electromyography amplitude for the barbell, band, and American hip thrust variations. Journal of Applied Biomechanics, 32(3), 254–260. https://doi.org/10.1123/jab.2015-0091
  • Contreras, B., Vigotsky, A. D., Schoenfeld, B. J., Beardsley, C., McMaster, D. T., Reyneke, J. H. T., & Cronin, J. B. (2017). Effects of a Six-Week Hip Thrust vs. Front Squat Resistance Training Program on Performance in Adolescent Males: A Randomized Controlled Trial. Journal of Strength and Conditioning Research 31(4). https://doi.org/10.1519/jsc.0000000000001510
  • Jarvis, P., Cassone, N., Turner, A., Chavda, S., Edwards, M., & Bishop, C. (2019). Heavy Barbell Hip Thrusts Do Not Effect Sprint Performance: An 8-Week Randomized Controlled Study. Journal of Strength and Conditioning Research, 33, 78–84. https://doi.org/10.1519/jsc.0000000000002146
  • Lieberman, D. E., Raichlen, D. A., Pontzer, H., Bramble, D. M., & Cutright-Smith, E. (2006). The human gluteus maximus and its role in running. Journal of Experimental Biology, 209(11), 2143–2155. https://doi.org/10.1242/jeb.02255
  • Martin, J. C., & Brown, N. A. T. (2009). Joint-specific power production and fatigue during maximal cycling. Journal of Biomechanics, 42(4), 474–479. https://doi.org/10.1016/j.jbiomech.2008.11.015
  • Németh, G., & Ohlsén, H. (1985). In vivo moment arm lengths for hip extensor muscles at different angles of hip flexion. Journal of Biomechanics, 18(2), 129–140. https://doi.org/10.1016/0021-9290(85)90005-3
  • Neumann, D. A. (2010a). Kinesiology of the hip: A focus on muscular actions. Journal of Orthopaedic and Sports Physical Therapy, 40(2), 82–94. https://doi.org/10.2519/jospt.2010.3025
  • Neumann, D. A. (2010b). Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation. Elsevier.
  • Payton, C. J. (2008). Biomechanical evaluation of movement in sport and exercise (2nd ed.). Routledge.
  • Pedrosa, G. F., Simoes, M., Figueiredo, M. O. C., Lacerda, L. T., Schoenfeld, B. J., Lima, F. V., Chagas, M. H., & Diniz, R. C. R. (2023). Training in the initial range of motion promotes greater muscle adaptations than at final. Sports, 11(2), 1–12. https://doi.org/10.3390/sports11020039
  • Randell, A. D., Cronin, J. B., Keogh, J.W.L., & Gill, N. D. (2011). Optimising transference of strength and power adaptation to sports performance. Strength and Conditioning Journal, 32(4), 100–106. https://doi.org/10.1519/ssc.0b013e3181e91eec
  • Roberts, T. J., & Belliveau, R. A. (2005). Sources of mechanical power for uphill running in humans. Journal of Experimental Biology, 208(10), 1963–1970. https://doi.org/10.1242/jeb.01555
  • Weyand, P. G., Sternlight, D. B., Bellizzi, M. J., & Wright, S. (2000). Faster top running speeds are achieved with greater ground forces not more rapid leg movements. Journal of Applied Physiology, 89(5), 1991–1999. https://doi.org/10.1152/jappl.2000.89.5.1991