Correlación entre el índice RMR de Bieniawski y el índice Q de Barton en formaciones sedimentarias de grano fino

  1. J. D. Fernández-Gutiérrez 1
  2. H. Pérez-Acebo 2
  3. D. Mulone-Andere 3
  1. 1 Geoconsult Ingenieros Consultores, Bilbao, España
  2. 2 Universidad del País Vasco (UPV/EHU), España
  3. 3 Red Ferroviaria Vasca ETS/RFV, España
Zeitschrift:
Informes de la construcción

ISSN: 0020-0883

Datum der Publikation: 2017

Ausgabe: 69

Nummer: 547

Art: Artikel

DOI: 10.3989/ID54459 DIALNET GOOGLE SCHOLAR lock_openOpen Access editor

Andere Publikationen in: Informes de la construcción

Zusammenfassung

From the XX century, various rock mass classification systems have been proposed. Among them, the Bieniawski’s RMR system and Barton’s Q system have emerged as the most used rock mass classification worldwide. Correlations between both indices have been proposed, usually with a wide scattering of the data used in deriving the equations. However, it has been observed that correlations established for a specific geological unit fit better. The aim of this paper is to propose a correlation between RMR and Q indices for fine-grained sedimentary rock formations, normally found in the area of Bilbao (Spain), by means of the collected data during the excavation of the tunnel Etxebarri-Casco Viejo of the line 3 of the Metropolitan Railway of Bilbao. Obtained equation shows a high correlation coefficient and a unique relationship between the two classification systems has been proposed, not depending on the choice of the independent variable.

Bibliographische Referenzen

  • (1) Bieniawski, Z. T. (1989). Engineering rock mass classifications. New York: John Wiley & Sons.
  • (2) Potvin, Y., Dight, P. M., Wesseloo, J. (2012). Some pitfalls and misuses of rock mass classification systems for mine design. Journal of the Southern African Institute of Mining and Metallurgy, 112(8): 1-6.
  • (3) Palmstrom, A. (1996). Characterizing rock masses by the RMi for use in practical rock engineering. Part 1: The development of the Rock Mass index (RMi). Tunnelling and Undergroung Space Technology, 11(2): 175-188 https://doi.org/10.1016/0886-7798(96)00015-6
  • (4) Hoek, E., Brown, E. T. (1980). Underground Excavations in Rock. London: The Institution of Mining and Metallurgy.
  • (5) Protodyakonov, M. M. (1907). Rock pressure on mine support (theory of mine support), pp. 23-45. Yekaterinoslav: Tipografiya Gubernskogo Zemstva.
  • (6) Terzaghi, K. (1946). Rock defects and loads on tunnel supports. En Proctor, R. V., White, T. L. (Eds.), Rock tunnelling with steel supports (pp. 17-99). Youngstown, Ohio: Commercial Shearing and Stamping Company.
  • (7) Lauffer, H. (1958). Classification for tunnel construction. Geologie und Bauwesen, 24(1): 46-51.
  • (8) Deere, D. U., Hendron, A. J., Patton, F. D., Cording, E. J. (1967). Design of surface and near-surface construction in rock. En Fairhurst (Ed.), Failure and breakage of rock, proceedings 8th US symposium on rock mechanics (pp. 237-302). New York: Society of Mining Engineers, AIME. PMCid:PMC1842238
  • (9) Deere, D. U. (1968). Geological Considerations. En Stagg, K., Zienkiewicz, W. (Eds.), Rock mechanics in engineering practice (pp. 1-20). New York: Wiley.
  • (10) Wickham, G. E., Tiedemann, H. R., Skinner, E. H. (1972, 5 de junio). Support determinations based on geologic predictions. En North American rapid excavation and tunnelling conference (pp. 43-64). Chicago: Society of Mining Engineers, AIME.
  • (11) Bieniawski, Z. T. (1973). Engineering classification of jointed rock masses. South African Institute of Civil Engineers, 15(12): 333-343.
  • (12) Barton, N., Lien, R., Lunde, J. (1974). Engineering classification of rock masses for the design of rock support. Rock Mechanics. 6(4): 189-236. https://doi.org/10.1007/BF01239496
  • (13) Barton, N., Grimstad, E. (1994). Rock mass conditions dictate choice between NMT and NATM. Tunnels & Tunnelling International, 26(10): 39-42.
  • (14) Hoek, E., Kasier, P. K., Bawden, W. F. (1995). Support of Underground Excavations in Hard Rock. Rotterdam: A. A. Balkema.
  • (15) Marinos, V., Marinos, P., Hoek, E. (2005). The geological strength índex: applications and limitations. Bulletin of Engineering Geology and the Environment, 64(1): 55-65. https://doi.org/10.1007/s10064-004-0270-5
  • (16) Palmstrom, A. (1996). Characterizing rock masses by the RMi for use in practical rock engineering, Part 2: Some practical applications of the Rock Mass index (RMi). Tunnelling and Undergroung Space Technology, 11(3): 287-303. https://doi.org/10.1016/0886-7798(96)00028-4
  • (17) Sheorey, P. R. (1993). Experience with the application of modern rock classifications in coal mine roadways. En Hudson, J. A. (Ed.), Comprehensive Rock Engineering, Principles, Practice and Projects, 5 (pp. 411-431). Oxford: Pergamon. https://doi.org/10.1016/B978-0-08-042068-4.50024-7
  • (18) Goel, R. K., Jethwa, J. L., Paithankar, A. G. (1996). Correlation between Barton's Q and Bieniawski's RMR—A new approach. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 33(2): 179-181. https://doi.org/10.1016/0148-9062(95)00057-7
  • (19) Kumar, N., Samadhiya, N. K., Anbalagan, R. (2004). Application of rock mass classification systems for tunnelling in Himalaya, India. International Journal of Rock Mechanics and Mining Sciences, 41(1): 852-857. https://doi.org/10.1016/j.ijrmms.2004.03.147
  • (20) Tzamos, S. Sofianos, A. I. (2007). A correlation of four rock mass classification systems through their fabric indices. International Journal of Rock Mechanics and Mining Sciences, 44(4): 477-495. https://doi.org/10.1016/j.ijrmms.2006.08.003
  • (21) Aydan, Ö., Ulusay, R., Tokashiki, N. (2014). A new rock mass quality rating system: Rock Mass Quality Rating (RMQR) and its applications to the estimation of geomechanical characteristics of rock masses. Rock Mechanics and Rock Engineering, 47(4): 1255-1276. https://doi.org/10.1007/s00603-013-0462-z
  • (22) Jing, L., Hudson, J. A. (2002). Numerical methods in rock mechanics. International Journal of Rock Mechanics and Mining Sciences, 39(4): 409-427. https://doi.org/10.1016/S1365-1609(02)00065-5
  • (23) Palmstron, A., Broch, E. (2006). Use and misuse of rock mass classification systems with particular reference to the Q-system. Tunnelling and Underground Space Technology, 21(6): 575-593. https://doi.org/10.1016/j.tust.2005.10.005
  • (24) Goel, R. K., Jethwa, J. L., Paithankar, A. G. (1995). Indian experiences with Q and RMR systems. Tunnelling and Underground Space Technology, 10(1): 97-109. https://doi.org/10.1016/0886-7798(94)00069-W
  • (25) Kaiser, P. K., MacKay, C., Gale, A. D. (1986). Evaluation of rock classification at B. C. Rail Tumbler Ridge Tunnels. Rock Mechanics and Rock Engineering, 19(4): 205-234. https://doi.org/10.1007/BF01039996
  • (26) Palmström, A. (2009). Combining the RMR, Q, and RMi classification systems. Tunnelling and Underground Space Technology, 24(4): 491-492. https://doi.org/10.1016/j.tust.2008.12.002
  • (27) Barton, N. (2002). Some new Q-value correlations to assist in site characterisation and tunnel design. International Journal of Rock Mechanics and Mining Science, 39(2): 185-216. https://doi.org/10.1016/S1365-1609(02)00011-4
  • (28) Zhang, L. (2016). Determination and applications of Rock Quality Designation (RQD). Journal of Rock Mechanics and Geotechnical Engineering, 8(3): 389-397. https://doi.org/10.1016/j.jrmge.2015.11.008
  • (29) Russo, G. (2009). A new rational method for calculating the GSI. Tunnelling and Underground Space Technology, 24(1): 103-111. https://doi.org/10.1016/j.tust.2008.03.002
  • (30) Pantelidis, L. (2009). Rock slope stability assessment through rock mass classification systems. International Journal of Rock Mechanics and Mining Sciences, 46(2): 315-325. https://doi.org/10.1016/j.ijrmms.2008.06.003
  • (31) Ribacchi, R., Lembo-Fazio, A. (2005). Influence of rock mass parameters on the performance of a TBM in a gneissic formation (Varzo Tunnel). Rock Mechanics and Rock Engineering, 38(2): 105-127. https://doi.org/10.1007/s00603-004-0032-5
  • (32) Hassanpour, J., Rostami, J., Khamehchiyan, M., Bruland, A., Tavakoli, H. R. (2009). TBM performance analysis in pyroclastic rocks: a case history of Karaj water conveyance tunnel. Rock Mechanics and Rock Engineering, 43(4): 427-445. https://doi.org/10.1007/s00603-009-0060-2
  • (33) Hamidi, J. K., Shahriar, K., Rezai, B., Rostami, J. (2010). Performance prediction of hard rock TBM using Rock Mass Rating (RMR) system. Tunnelling and Underground Space Technology, 25(4): 333-345. https://doi.org/10.1016/j.tust.2010.01.008
  • (34) Innaurato, N., Mancini, A., Rondena, E., Zaninetti, A. (1991, 16 de septiembre). Forecasting and effective TBM performances in a rapid excavation of a tunnel in Italy. En 7th International Congress ISRM (pp. 1009-1014). Aachen.
  • (35) Hassanpour, J., Rostami, J., Khamehchiyan, M., Bruland, A. (2009). Developing new equations for TBM performance prediction in carbonate-argillaceous rocks: a case history of Nowsood water conveyance tunnel. Geomechanics and Geoengineering: An International Journal, 4(4): 287-297. https://doi.org/10.1080/17486020903174303
  • (36) Barton, N. (2000). TBM Tunnelling in Jointed and Faulted Rock. Rotterdam: Balkema.
  • (37) Ranasooriya, J., Nikraz, H. (2009). Reliability of the linear correlation of Rock Mass Rating (RMR) and Tunnelling Quality Index (Q). Australian Geomechanics, 44(2): 47-54.
  • (38) Castro-Fresno, D., Diego-Carrera, R., Ballester-Mu-oz, F., Alvarez-Garcia, J. J. (2010). Correlation between Bieniawski's RMR and Barton's Q index in low-quality soils. Revista de la Construcción, 9(1): 107-119. https://doi.org/10.4067/S0718-915X2010000100012
  • (39) Gallo-Laya, J., Pérez-Acebo, H., García-Bragado, D. (2016). Excavación, sostenimiento y técnicas de corrección de túneles, obras subterráneas y labores mineras. Bilbao: Universidad del País Vasco UPV/EHU.
  • (40) Bieniawski, Z. T. (1976). Rock mass classification in rock engineering. En Bieniawski, Z. T. (Ed.), Proceedings of the Symposium on Exploration for Rock Engineering (pp. 97-106). Johannesburg: A. A. Balkema.
  • (41) Bieniawski, Z. T. (1974, 1 de septiembre). Geomechanics classification of rock masses and its application in tunneling. En 3rd International Congress on Rock Mechanics (pp. 27-32). Denver: International Society for Rock Mechanics (ISRM).
  • (42) Bieniawski, Z. T. (1975, 21 de julio). Case Studies: Prediction of rock mass behaviour by the geomechanics classification. En 2nd Australia-New Zealand Conference on Geomechanics (pp. 36-41). Brisbane: Institution of Engineers, Australia.
  • (43) Bieniawski, Z. T. (1979, 2 de septiembre). The geomechanics classification in rock engineering applications. En 4th ISRM Congress (pp. 41-48). Montreux (Switzerland): International Society for Rock Mechanics (ISRM).
  • (44) Celada, B., Tardáguila, I., Varona, P., Rodríguez, A., Bieniawski, Z. T. (2014, 9 de mayo). Innovating tunnel design by an improved experience-based RMR system. En World Tunnel Congress. Iguassu Falls, Brazil: ITA-AITES.
  • (45) Barton, N. (1976). Recent experience with the Q System in tunnel support design. En Bieniawski, Z. T. (Ed.), Proceedings of the Symposium on Exploration for Rock Engineering (pp. 107-115). Johannesburg: A. A. Balkema.
  • (46) Barton, N., Lien, R., Lunde, J. (1977). Estimation of support requirements for underground excavations. En Fairhurst, C., Crouch, S. L. (Eds.), 16th Symposium on Design Methods in Rock Mechanics (pp. 163-177). New York: American Society of Civil Engineers.
  • (47) Barton, N., Loset, R., Lien, R., Lunde, J. (1980). Application of Q-system in design decisions concerning dimensions and appropriate support for underground installations. En Begman, M. (Ed.), Subsurface Space, 2 (pp. 553-561). New York: Pergamon.
  • (48) Grimstad, E., Barton, N. (1993). Updating the Q-system for NMT. En Jompen, Opsahl, Berg (Eds.), Proceedings of the International Symposium on Sprayed Concrete – Modern use of wet mix sprayed concrete for underground support (pp. 46-66). Oslo: Norwegian Concrete Association.
  • (49) Bieniawski, Z. T., Barton, N. (2009). RMR and Q: Setting the record straight. Tunnels and Tunnelling International, February 2009: 26-29.
  • (50) Jethwa, J. L., Dube, A. K., Singh, B., Mithal, R. S. (1982). Evaluation of methods for tunnel support design in squeezing rock conditions. En 4th International Congress of International, 5 (pp. 125-134). Delhi: Association of Engineering Geology.
  • (51) Rutledge, J. C., Preston, R. L. (1978, 29 de mayo). Experience with engineering classifications of rock. En International Tunnelling Symposium (pp. A3.1-A3.7). Tokyo, Japan Tunnelling Association.
  • (52) Cameron-Clarke, I. S., Budavari, S. (1981). Correlation of rock mass classification parameters obtained from borecore and in-situ observations. Engineering Geology, 17(1-2): 19-53. https://doi.org/10.1016/0013-7952(81)90019-3
  • (53) Moreno Tallon, E. (1982, 7 de junio). Comparison and application of geomechanics classification schemes in tunnel construction. En Tunnelling 82, 3rd International Symposium (pp. 241-246). Brighton: The Institute of Mining and Metalurgy.
  • (54) Celada Tamames, B. (1983). Fourteen years of experience on rock bolting in Spain. En Stephansson, O. (Ed.), Proceedings of the International Symposium on Rock Bolting, (pp. 295-311). Rotterdam: A.A. Bankelma.
  • (55) Abad, J., Celada, B., Chacon, E., Gutierrez, V., Hidalgo, E. (1983, 10 de mayo). Application of geomechanical classification to predict the convergence of coal mine galleries and to design their supports. En 5th International Congress of Rock Mechanics (pp. 15-19). Melbourne: International Society for Rock Mechanics (ISRM).
  • (56) Sunwoo, C., Hwang, S. (2001, 11 de septiembre). Correlation of rock mass classification methods in Korean rock mass. En 2nd Asian Rock Mechanics Symposium (pp. 631-633). Beijing: A. A. Balkema.
  • (57) Alkorta-Lertxundi, A., Bernardo-Sánchez, A. (2010, 18 de mayo). Comparación de la aplicación de las clasificaciones geotécnicas RMR, Q y GSI en la ejecución de los túneles de la Variante Sur Metropolitana de Bilbao. En Jornadas de Ingeniería Geológica y Geotecnia de Túneles. Madrid: Ilustre Colegio Oficial de Geólogos.
  • (58) Lertxundi, A. A., Bernal, R. M., Ruiz, G. M., Sánchez-Rodríguez, S. (2014). Geotechnical characterization and correlations obtained in Flysch units. En Alejano, R., Perucho, A., Olalla, C., Jiménez, R. (Eds.), Rock Engineering and Rock Mechanics: Structures in and on Rock Masses (pp. 439-444). London: Taylor & Francis Group. https://doi.org/10.1201/b16955-73
  • (59) Sayeed, I., Khanna, R. (2015, 27 de octubre). Empirical correlation between RMR and Q systems of rock mass classification derived from Lesser Himalayan and Central crystalline rocks. En International Conference on "Engineering Geology in New Millenium". New Delhi: Journal Engineering of Geology.
  • (60) Madinaveitia, J. R. (1999, 31 de mayo). Station cavern: The heart of the Bilbao Metro. En Challenges for the 21st Century: Proceedings of the World Tunnel Congress' 99 (pp. 261-265). Oslo: Taylor & Francis.
  • (61) IMEBISA (1998). Metro Bilbao – Ingeniería y Arquitectura / Ingeniearitzako eta Arkitekturak. Bilbao: IMEBISA.
  • (62) Gullón, A. A., Pacios, P. (2010, 14 de mayo). Experience in Construction in Strong Rock with Roadheader in the Ariz- Basauri section of the Bilbao Metro. En ITA-AITES World Tunnel Congress, WTC 2010. Vancouver: International Tunnelling Association. PMCid:PMC2958469
  • (63) Pérez-Acebo, H., Marcano-Ceballos, R. (2015, 17 de junio). Excavación del túnel del tramo Ariz-Basauri del Metro de Bilbao en terrenos de caliza altamente karstificada y en zonas de rellenos coluviales sin presencia de roca bajo zona densamente poblada. En Spain Minergy, I Congreso Internacional de Minería, Energía y Metalurgia (pp. 207-216). Gijón: Universidad de Oviedo.
  • (64) Rabcewicz, L. V. (1964). The new Austrian tunnelling method. Water Power, 16(11): 453-457.
  • (65) Ferrero, P. P., Mota, E. (2008). Excavación de túneles con rozadora: aplicación en el tramo Aritz-Basauri en la línea 2 del Metro de Bilbao. Ingeopres, 176: 44-54.