Análisis de la marcha: sus fases y variables espacio-temporales

  1. Cámara Tobalina, Jesús
Revue:
Entramado

ISSN: 1900-3803

Année de publication: 2011

Volumen: 7

Número: 1

Pages: 160-173

Type: Article

D'autres publications dans: Entramado

Résumé

The gait is defined as a bipedal mode of locomotion formed by a succession of singleand double-leg support periods enabling the displacement of the center of gravity of the human body with a smaller energy cost than any other form of human locomotion. The basic walking cycle is formed by the stride. Analysis of the spatio-temporal variables makes it possible to perform a detailed study of this mode of locomotion. There is a plethora of scientific studies analyzing spatio-temporal gait variables, such as length and duration of step and stride, support and swing times, and cadence and walking speed. The aims of this study are to present the most relevant information about the phases into which the gait can be divided, and to identify the spatio-temporal variables used for gait analysis. Spatio-temporal analysis has been shown to be a valid method of providing a detailed study of gait.

Références bibliographiques

  • AL-OBAIDI, SAUD; WALL, J.C.; AL-YAQOUB, A. y AL-GHANIM, M. Basic gait parameters: A comparison of reference data for normal subjects 20 to 29 years of age from Kuwait and Scandinavia. En: Journal of Rehabilitation Research and Development. No. 40 (2003); p. 361-366.
  • AMINIAN, K.; NAJAFI, B.; BÜLA, C.; LEVYRAZ, P.-F. y ROBERT, PH. Spatio-temporal parameters of gait measured by an ambulatory system using miniature gyroscopes. En: Journal of Biomechanics. No. 35 (2002); p. 689-699.
  • ANDRIACCHI, T.; OGLE, J. y GALANTE, J. Walking speed as a basis for normal and abnormal gait measurements. En: Journal of Biomechanics. No. 10 (1977); p. 261-268.
  • BECKETT, R. y CHANG, K. An evaluation of the kinematics of gait by minimun energy. En: Journal of Biomechanics. No. 1 (1968); p. 147-159.
  • BEGG, R.K.; SPARROW, W.A. y LYTHGO, N.D. Time domain of foot ground reaction forces in negotiating obstacles. En: Gait and Posture. No. 7 (1998); p. 99 – 109.
  • BISHOP, M.; BRUNT, D.; PATHARE, N. y PATEL, B. The effect of velocity on the strategies used during gait termination. En: Gait and Posture. No. 20 (2004); p. 134-139.
  • BLANC, Y.; BALMER, C.; LANDIS, T. y VINGERHOETS, F. Temporal Parameters and Patterns of the Foot Roll Over During Walking: Normative Data for Healthy Adults. En: Gait and Posture. No. 10 (1999); p. 97-108.
  • BRADFORD, E.H. An examination of human gait. En: Boston Med. Surg. J. No. 137 (1897); p. 329-332.
  • BREIT, G.A. y WHALEN, R.T. Prediction of human gait parameters from temporal measures of foot-ground contact. En: Medicine & Science in Sports & Exercise. No. 29 (1997); p. 540-547.
  • BRESLER, B. y FRANKEL, J.P. The forces and moments in the leg during level walking. En: ASME. No. 72 (1950); p. 27-36.
  • CAMARA, J; MARTINEZ, R y GAVILANES, B. Reproducibilidad de las variables espacio-temporales y de las componentes de la fuerza de reacción del suelo en la marcha con botas de bombero. En: E-balonmano, Revista de Ciencias del Deporte. No. 6 (2010); p. 141-153
  • CAIRNS, M.A.; BURDETT, R.G.; PISCIOTTA, J.C. y SIMON, S.R. A biomechanical analysis of racewalking gait. En: Medicine & Science in Sports & Exercise. No. 18 (1986); p. 446-453.
  • CARMICHAEL y WHITTLE, MICHAEL W. Gender differences in the heelstrike transient. En: Gait and Posture. No. (1999); p. 144- 145.
  • CAVANAGH, PR. The biomechanics of lower extermity action in distance running. En: Foot Ankle. No. 7 (1987); p. 197-217.
  • CHAO, E.Y.; LAUGHMAN, R.K.; SCHNEIDER, E. y STAUFFER, R.N. Normative data of knee joint motion and ground reaction forces in adult level walking. En: Journal of Biomechanics. No. 16 (1983); p. 219-233.
  • CHEN, WEN-LING; O´CONNOR, J.J. y RADIN, E.L. A comparison of the gaits of Chinese and Caucasian women with particular reference to their heelstrike transients. En: Clinical Biomechanics. No. 18 (2003); p. 207-213.
  • COLLINS, J.J. y WHITTLE, MICHAEL W. Inlfuence of gait parameters on the loading of the lower limb. En: Journal of Biomedical Engineering. No. 11 (1989); p. 409-412.
  • CUTLIP, R.G.; MANCINELLI, C.; HUBER, F. y DIPASQUALE, J. Evaluation of an instrumented walkway for measurement of the kinematic parameters of gait. En: Gait and Posture. No. 12 (2000); p. 134-138.
  • DANION, F.; VARRAINE, E.; BONNARD, M. y PAILHOUS, J. Stride Variability in Human Gait: The Effect of Stride Frequency and Stride Length. En: Gait and Posture. No. 18 (2003); p. 69-77.
  • DANKLOFF, C.; RODRÍGUEZ, R. y FERNÁNDEZ VALENCIA, R. Estudio morfofuncional de la marcha humana. En: R. Biomecánica. No. 1 (1992); p. 54-58.
  • DELLA CROCE, U.; RILEY, P.O.; LELAS, J.L. y KERRIGAN, D.C. A refined review of the determinants of gait. En: Gait and Posture. No. 14 (2001); p. 79-84.
  • DIOP, M.; RAHMANI, A.; BELLI, R.; GAUTHERON, V.; GEYSSANT, A. y COTTALORDA, J. Influence of Speed Variation and Age on the Asymmetry of Ground Reaction Forces and Stride Parameters of Normal Gait in Children. En: Journal of Pediatric Orthopaedics. No. 13 (2004); p. 308-314.
  • DOMMASCH, H.S.; BRANDELL, B.R. y MURRAY, E.B. Investigation into techniques of gait analysis. En: Journal of the Biological Photographic Association. No. 40 (1972); p. 106-116.
  • ESENYEL, M.; WALDEN, G.; GITTER, A.; WALSH, N.E. y KARACAN, I. Gait characteristics with and without shoes. En: Türkiye Fiziksel Tıp ve Rehabilitasyon Dergisi. No. 50 (2004); p. 33-37.
  • FARLEY, CLAIRE T. y FERRIS, DANIEL P. Biomechanics of walking and running: center of mass movements to muscle action. En: Exercise and Sport Science Reviews. No. 26 (1988); p. 253-285.
  • FOLMAN, Y.; WOSK, J.; SHABAT, S. y GEPSTEIN, R. Attenuation of spinal transients at heel strike using viscoelastic heel insoles: an in vivo study. En: Preventive Medicine. No. 39 (2004); p. 351- 354.
  • FORNER, A.; KOOPMAN, H.J.F.M. y VAN DER HELM, F.C.T. Use of pressure insoles to calculate the complete ground reaction forces. En: Journal of Biomechanics. No. 37 (2004); p. 1427- 1432.
  • GAGE, JR. An overview of normal walking. En: Instr. Course Lect. No. 39 (1990); p. 291-303.
  • GARD, S.A. y REGINA, J.K. The effect of a shock-absorbing pylon on the gait of persons with unilateral transtibial amputation. En: Journal of Rehabilitation Research and Development. No. 40 (2003); p. 109-124.
  • GILL, H.S. y O´CONNOR, J.J. Heelstrike and the pathomechanics of osteoarthrosis: a pilot gait study. En: Journal of Biomechanics. No. (2003); p. 1625-1631.
  • GOBLE, D.J.; MARINO, G.W. y POTVIN, J.R. The Influence of Horizontal Velocity on Interlimb Symmetry in Normal Walking. En: Human Movement Science. No. 22 (2003); p. 271-283.
  • GRIEVE, D.W. Gait patterns and the speed of walking. En: Biomedical Engineering. No. 3 (1968); p. 119-122.
  • GRIEVE, D.W. y GEAR, R.J. The relationships between length of stride, step frequency, time of swing and speed of walking for children and adults. En: Ergonomics. No. 5 (1966); p. 379-399.
  • HAMILL, J.; BATES, B.T. y KNUTZEN, K.M. Ground reaction force symmetry during walking and running. En: Medicine & Science in Sports & Exercise. No. 55 (1984); p. 289-293.
  • HARTMANM, A.; MURER, K.; BIE, R. y BRUIN, E. Reproducibility of spatio-temporal gait parameters under different conditions in older adults using a trunk triaxial accelerometer system. En: Gait and Posture. No. 30 (2009); p. 351-355.
  • HAY, J.G. Cycle rate, length, and speed of progression in human locomotion. En: Journal of Applied Biomechanics. No. 18 (2002); p. 257-270.
  • HOF, A.L. Scaling gait data to body size. En: Gait and Posture. No. 23 (1996); p. 222-223.
  • HOLT, K.G.; HAMILL, J. y ANDRES, R.O. Predicting the minimal energy costs of human walking. En: Medicine & Science in Sports & Exercise. No. 23 (1991); p. 491-498.
  • INMAN, V.T. Human Locomotion. En: Canadian Medical Association Journal No. 94 (1966); p. 1047-1053.
  • JACOBS, N.J. Analysis of the vertical component of force. En: Journal of Biomechanics No. 5 (1972); p. 11-34.
  • KADABA, M.P.; RAMAKRISHNAN, H.K. y WOOTEN, M.E. Measurement of lower extremity kinematics during level walking. En: Journal of Orthopaedics Research. No. 8 (1990); p. 383-392.
  • KERRIGAN, D.C.; JENNIFER, L.L.; GOGGINS, J.; MERRIMAN, G.J.; KAPLAN, R.J. y FELSON, D.T. Effectiveness of Lateral-Wedge Insole on Knee Varus Torque in Patients With Knee Osteoarthritis. En: Archives of Physical Medical Rehabilitation. No. 83 (2002); 134-141.
  • KIMURA, T.; YAGURAMAKI, N.; FUJITA, M.; OGIUE-IKEDA, M.; NISHIZAWA, S. y UEDA, Y. Development of energy and time parameters in the walking of healthy humans infants. En: Gait and Posture. No. 5 (2004); p. 89-94.
  • LAMOREUX, LA. Kinematic measurements in walking. En: Bulletin Prosthetic Research. No. (1971); p. 3-84.
  • LEE, J.A.; CHO, S.; LEE, Y; YANG, H y LEE, J. Portable activity monitoring system for temporal parameters of gait cycles. En: Journal of Medical Systems. No. 34 (2010); p. 959-966.
  • LELAS, J.L.; MERRIMAN, G.J.; RILEY, P.O. y KERRIGAN, D.C. Predicting peak kinematic and kinetic parameters from gait speed. En: Gait and Posture. No. 17 (2003); p. 106-112.
  • MACELLARI, V.; GIACOMOZZI, C. y SAGGINI, R. Spatialtemporal Parameters of Gait: Reference Data and a Statistical Method for Normality Assessment. En: Gait and Posture. No. 10 (1999); p. 171-181.
  • MAKI, B.E. Gait changes in older adults: predictors of falls or indicators of fear? En: J Am Geriatr Soc. No. 45 (1997); p. 313- 320.
  • MARTIN, P.E. y MARSH, A.P. . Step length and frequency effects on ground reaction forces during walking. Technical note. En: Journal of Biomechanics. No. 25 (1992); p. 1237-1239.
  • MCCAW, STEVEN T.; HEIL, MARK E. y HAMILL, J. The effect of comments about shoe construction on impact forces during walking. En: Medicine & Science in Sport & Exercise. No. 32 (2000); p. 1258-1164.
  • MENZ, H.B.; LATT, M.D.; TIEDEMANN, A.; MUN SAN KWAN, M. y LORD, S.R. Reliability of the Gaitrite walkway system for the quantification of temporo-spatial parameters of gait in young and older people. En: Gait and Posture. No. 20 (2004); p. 20-25.
  • MENZ, H.B.; LORD, S.R. y FITZPATRICK, R.C. Age-Related Differences in Walking Stability. En: Age and Ageing. No. 32 (2003); p. 137-142.
  • MILLS, P.M. y BARRETT, R.S. Swing Phase Mechanics of Healthy Young and Elderly Men. En: Human Movement Science. No. 20 (2001); p. 427-446.
  • MINETTI, A.E.; BOLDRINI, L.; BRUSAMOLIN, L.; ZAMPARO, P. y MCKEE, T. A feedback-controlled treadmill (treadmill-ondemand) and the spontaneous speed of walking and running in humans. En: Journal of Applied Physiology. No. 95 (2003); p. 838- 843.
  • MURRAY, M.P. Gait as a total pattern of movement. En: American Journal of Physical Medicine. No. 46 (1967); p. 290-333.
  • MURRAY, M.P.; DROUGHT, B. y KORY, R.C. Walking Patterns of Normal Men. En: The Journal of Bone And Joint Surgery. No. 46 (1964); p. 335-360.
  • MURRAY, M.P.; KORY, R.C.; CLARKSON, B.H. y SEPIC, S.B. Comparison of free and fast speed walking patterns of normal men. En: American Journal of Physical Medicine. No. 45 (1966); p. 8-24.
  • MURRAY, M.P.; KORY, R.C. y SEPIC, S.B. Walking patterns of normal women. En: Archives of Physical Medicine and Rehabilitation. No. (1970); p. 637-650.
  • NILSSON, J. y THORSTENSSON, A. Ground reaction forces at different speeds of human walking and running. En: Acta Physiologica Scandinavica. No. 2 (1989); p. 217-227.
  • NURSE, M.A.; HULLIGER, M.; WAKELING, J.M.; NIGG, B. y STEFANYSHIN, D. Changing the texture of the footwear can alter gait patterns. En: Journal of Electromyography and Kinesiology. No. 15 (2005); p. 496-506.
  • OCAÑA, A.; GÓMEZ PELLICO, L.; FERRER BLANCO, M. y DANKLOFF MORA, C. Análisis cinético de la marcha tras la artroplastia de rodilla. En: Rehabilitación. No. 33 (1993); p. 180- 189.
  • OEFFINGER, D.; BRAUCH, B.; CRANFILL, S.; HISLE, C.; WYNN, C.; HICKS, R., et al. Comparison of gait with and without shoes in children. En: Gait and Posture. No. 9 (1999); p. 95-100.
  • ORENDURFF, M.S.; SEGAL, A.D.; KLUTE, G.K.; BERGE, J.S.; ROHR, E.S. y KADEL, N.J. The effect of walking speed on center of mass displacement. En: Journal of Rehabilitation Research and Development. No. 41 (2004); p. 829-834.
  • OWINGS, T.M. y GRABINER, M.D. Variability of step kinematics in young and older adults. En: Gait and Posture. No. 20 (2004); p. 26-29.
  • PERRY, S.D. y LAFORTUNE, M.A. Influences of Inversion/Eversion of the Foot upon Impact Loading During Locomotion. En: Clinical Biomechanics. No. 10 (1995); p. 253-257.
  • POLIO, F.E.; GOWLING, T.L. y JACKSON, R.W. Walking boot design: a gait analysis study En: Gait and Posture. No. 7 (1998); p. 179.
  • POLIO, F.E.; GOWLING, T.L. y JACKSON, R.W. Walking boot design: a gait analysis study. En: Orthopaedics. No. 22 (1999); p. 503-507.
  • RADIN, E.L.; YANG, K.H.; RIEGGER, C.; KISH, V.L. y O´CONNOR, J. Relationship between lower limb dynamics and knee joint paint. En: Journal of Orthopaedic Research. No. 9 (1991); p. 398-405.
  • RALSTON, H.J. Energy-speed relation and optimal speed during level walking. En: Int Z angew. Physiol. einschl. Arbeitsphysiol. No. 17 (1958); p. 273-288.
  • RILEY, P.O.; DELLA CROCE, U. y CASEY, D. Propulsive adaptation to changing gait speed. En: Journal of Biomechanics. No. 34 (2001); p. 197-202.
  • RILEY, P.O. y KERRIGAN, D.C. The effect of voluntary toe-walking on body propulsion. En: Clinical Biomechanics. No. 16 (2001); p. 681-687.
  • SCHWARTZ, R.P. y HEATH, A.L. The definition of human locomotion on the basis of measurement. With description of oscillographic method. En: Journal of Bone and Joint Surgery. No. 29 (1947); p. 203-214.
  • SEKIYA, N. y NAGASAKI, H. Reproducibility of the walking patterns of normal young adults: test-retest reliability of the walk ratio (step-length/step-rate). En: Gait and Posture. No. 7 (1998); p. 225-227.
  • SEKIYA, N.; NAGASAKI, H.; ITO, H. y FURUNA, T. Optimal walking in terms of variability in step length. En: Journal of Orthopaedics and Sports Physical Theraphy. No. 26 (1997); p. 266-272.
  • SHIBA, N.; KITAOKA, H.B.; CAHALAN, T.D. y CHAO, E.Y. Shock-absorbing effect of shoe insert materials commonly used in management of lower extremity disorders. En: Clinical Orthopaedics and Related Research. No. (1995); p. 130-136.
  • SKORECKI, J. The design and construction of a new apparatus for measuring the vertical forces exerted in walking:a gait machine. En: Journal of Strain Analysis. No. 1 (1966); p. 1966.
  • SMITH, K.U.; MCDERMID, C.D. y SHIDEMAN, F.E. Analysis of the temporal components of motion in human gait. En: American Journal of Physical Medicine. No. 39 (1960); p. 142-151.
  • STACOFF, A.; DIEZI, C.; LUDER, G.; STÜSI, E. y KRAMES-DE QUERVAIN, I.A. Ground reaction forces on stairs: effects of stair inclination and age. En: Gait and Posture. No. (2005); p. 24-38.
  • TESIO, L.; LANZI, D. y DETREMBLEUR, C. The 3-D motion of the centre of gravity of the human body during level walking. I. Normal subjects at low and intermediate walking speeds. En: Clinical Biomechanics. No. 13 (1998); p. 77-82
  • THORSTENSSON, A. y ROBERTSHON, H. Adaptations to changing speed in human locomotion: speed of transition between walking and running. En: Acta Physiologica Scandinavica. No. 131 (1987); p. 211-214.
  • TITIANOVA, E.B.; PITKÄNEN, K.; PÄÄKKÖNEN, A.; SIVENIUS, J. y TARKKA, I.M. Gait characteristics and functional ambulation profile in patients with chronic unilateral stroke. En: American Journal of Physical Medicine and Rehabilitation. No. 82 (2003); p. 778-786.
  • VAN DER LINDEN, MARIËTA, L. ; KERR, A.M.; HAZLEWOOD, M.E.; HILLMAN, S.J. y ROBB, J.E. Kinematic and Kinetic Gait Characteristics of Normal Children Walking at a Range of Clinically Relevant Speeds. En: Journal of Pediatric Orthopaedics. No. (2002); p. 800-806.
  • VAN UDEN, C.J.T. y BESSER, M.P. Test-retest reliability of temporal and spatial gait characteristics measured with an instrumeten walkway system (GAITRite). En: BMC Musculoskeletal Disorders. No. 5 (2004); 134-141.
  • VOLOSHIN, A. y WOSK, A. An In Vivo Study of Low back Pain and Shock Absorption in the Human Locomotor System. En: Journal of Biomechanics. No. 15 (1982); p. 21-27.
  • VOLOSHIN, A.; WOSK, J. y BRULL, M. Force Wave Transmission Through the Human Locomotor System. En: Journal of Biomechanical Engineering. No. 103 (1981); p. 48-50.
  • WATERS, R.L. y MULROY, S. The energy expenditure of normal and pathological gait (Review). En: Gait and Posture. No. (1999); p. 207-231.
  • WEBSTER, K.E.; WITTWER, J.E. y FELLER, J.A. Validity of the GAITrite walkway system for the measurement of averaged and individual step parameters of gait. En: Gait and Posture. No. (2004); p. 234-241
  • WHITE, R.; AGOURIS, I. y FLETCHER, E. Harmonic analysis of force platform data in normal and cerebral palsy gait. En: Clinical Biomechanics. No. 20 (2005); p. 508-516.
  • WHITTLE, M.W. Three-dimensional motion of the center of gravity of the body during walking. En: Human Movement Science. No. 16 (1997); p. 347-355.
  • WINTER, D.A. Kinematic and kinetic patterns in human gait: variability and compensating effects. En: Human Movement Science. No. 3 (1984); p. 51-76.
  • WOSK, J. y VOLOSHIN, A. Wave attenuation in skeletons of young healthy persons. En: Journal of Biomechanics. No. 14 (1981); p. 261-267.
  • YAMASHITA, T. y KATOH, R. Moving patterns of point of application of vertical resultant force during level walking. En: Journal of Biomechanics. No. 9 (1976); p. 93-99.
  • ZENI, J.A. y HIGGINSON, J.S. Gait parameters and stride-tostride variability during familiarization to walking on a split-belt treadmill. En: Clinical Biomechanics. No. 25 (2010); p. 383-386.
  • ZHANG, S.; CLOWERS, K.G. y POWELL, D. Ground reaction force and 3D biomechanical characteristics of walking in shortleg walkers. En: Gait and Posture. No. 23 (2006); p. 234-239.
  • ZIJLSTRA, W. Assessment of spatio-temporal parameters during unconstrained walking. En: European Journal of Applied Physiology. No. (2004); p. 39-44.
  • ZILJSTRA, W. ; RUTGERS, A.W.F.; HOF, A.L. y VAN WEERDEN, T.W. Voluntary and involuntary adaptation of walking to temporal and spatial constraints. En: Gait and Posture. No. 3 (1995); p. 13- 18.