Exploring the relationship between attitudes toward science and PISA scientific performance.

  1. Gorka Bidegain 1
  2. Jose Francisco Lukas Mujika 1
  1. 1 Universidad del País Vasco/Euskal Herriko Unibertsitatea
    info

    Universidad del País Vasco/Euskal Herriko Unibertsitatea

    Lejona, España

    ROR https://ror.org/000xsnr85

Journal:
Revista de psicodidáctica

ISSN: 1136-1034

Year of publication: 2020

Volume: 25

Issue: 1

Type: Article

DOI: 10.1016/J.PSICOD.2019.08.003 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Revista de psicodidáctica

Abstract

The Program for International Student Assessment (PISA) 2006 and PISA 2015 are focused on students’ competency in science, providing wide data banks for the analysis of the interaction between science performance and attitudes toward science. The few attempts to study this relationship in other assessment studies suggest some positive correlations on the individual level and some unexpected negative correlations and a lack of scalar invariance across countries. The aim of this study is to contribute to the exploration of the generalizability of this relationship across countries and regions within nations. For this, the PISA 2015 data are analyzed using Ordinary Least Square and Quantile regression modelling techniques together with bivariate correlation matrix analysis. The relationship patterns between attitudes such as self-efficacy, interest in science, participation in science activities, and enjoyment of science and performance in science are explored at different scales; across 72 PISA participating countries and across 17 regions in Spain. Across countries, the relationship is unexpectedly negative for all attitudes, although high quantiles show a much less pronounced pattern. Across regions, only self- efficacy is significantly and positively correlated with science performance. Overall, positive non–linear relationships are distinguished for high performance values. The results of this study suggest the need of further research using non-parametric quantile regression modeling, and exploring attitudinal indices scaling when investigating potential universal/invariant models. This research should try to justify the comparison across countries/regions using aggregated scores, while incorporating differences in cultural, educational, and social influences on attitudes toward science

Bibliographic References

  • Bandura, A. (1977). Social learning theory. New York: General Learning Press.
  • Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.
  • Baram-Tsabari, A., & Yarden, A. (2009). Identifying meta-clusters of students’ interest in science and their change with age. Journal of Research in Science Teaching, 46(9), 999–1022. http://dx.doi.org/10.1002/tea.20294
  • Chi, M. T. H. (2000). Self-explaining: The dual processes of generating inference and repairing mental models. In R. Glaser (Ed.), Advances in instructional psychology (vol 5): Educational design and cognitive science (pp. 161–238). Mahwah: Erlbaum.
  • Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. Journal of the Learning Sciences, 14, 161–199. http://dx.doi.org/10.1207/s15327809jls1402 1
  • Dolin, J., & Evans, R. H. (2011). Initial teacher education and continuing professional development for science teachers: A review of recent research results In A. Delhaxhe (Ed.), Science education in Europe: National policies, practices and research (pp. 103–110). Brussels: Education, Audiovisual and Culture Executive Agency. http://dx.doi.org/10.2797/7170
  • du Prel, J. B., Hommel, G., Rohrig, B., & Blettner, M. (2009). Confidence interval or p-value?: Part 4 of a series on evaluation of scientific publications. Deutsches Ärzteblatt International, 106(19), 335–339. http://dx.doi.org/10.3238/ arztebl.2009.0335
  • Ess, C., & Sudweeks, F. (2001). Culture, technology, communication: Towards an intercultural global village. Albany, New York: State University of New York Press.
  • Eurostat. (2018). European commission eurostat database.
  • Fonseca, J., Valente, M. O., & Conboy, J. (2011). Student characteristics and PISA science performance: Portugal in cross-national comparison. Procedia - Social and Behavioral Sciences, 12, 322–329. http://dx.doi.org/10.1016/j.sbspro. 2011.02.041
  • Gallardo, M., Fernández-Navas, M., Sepúlveda-Ruiz, M. P., Serván, M. J., Yus, R., & Barquín, J. (2010). PISA y la competencia científica: Un análisis de las pruebas de PISA en el Área de Ciencias. Relieve, 16(2), 1–17.
  • Gil Pérez, D., & Vilches, A. (2006). ¿Cómo puede contribuir el proyecto PISA a la mejora de la enseñanza de las ciencias (y de otras áreas de conocimiento)? Revista de Educación, Volumen Extra PISA, 295–331.
  • Gorur, R. (2014). Towards a sociology of measurement in education policy. European Educational Research Journal, 13(1), 58–72. http://dx.doi.org/10.2304/eerj. 2014.13.1.58
  • Hernández, F. (2006). El informe PISA: Una oportunidad para replantear el sentido del aprender en la escuela secundaria. Revista de Educación, Volumen Extra PISA, 357–379.
  • INEE. (2017). PISA 2015. In Programa para la evaluación internacional de los alumnos. Informe español. Madrid: Instituto Nacional de Evaluación Educativa. Ministerio de Educación, Cultura y Deporte.
  • Jornet, J. M. (2013). Asignaturas pendientes en las evaluaciones a gran escala. Ponencia en el simposio metodología de investigación en ámbitos educativos plurales y diversos. In XVI Congreso Nacional y II internacional de Modelos de Investigación Educativa de AIDIPE.
  • Koenker, R. (2005). Quantile regression (econometric society monographs). Cambridge: Cambridge University Press. http://dx.doi.org/10.1017/CBO9780511754098
  • Koenker, R. (2017). Quantreg: Quantile regression. R package version 5.33.http://dx.doi.org/10.1201/9781315120256
  • Krapp, A., & Prenzel, M. (2011). Research on interest in science: Theories, methods, and findings. International Journal of Science Education, 33, 27–50. http://dx.doi.org/10.1080/09500693.2010.518645
  • Lipsitz, M., Belloni, A., Chernozhukov, V., & Fernández-Val, I. (2016). Quantreg. non- par: An R package forperforming nonparametric series quantile regression. arXiv preprint arXiv:1610.08329. http://dx.doi.org/10.32614/RJ-2016-052
  • Marsh, H., Hau, K., Artelt, C., Baumert, J., & Pechar, J. (2006). OECD’s brief self-report measure of educational Psychology’s most useful affective constructs: Cross- cultural, psychometric comparisons across 25 countries. International Journal of Testing, 6, 311–360. http://dx.doi.org/10.1207/s15327574ijt0604 1
  • Mazzeo, J., & von Davier, M. (2013). Linking scales in international large-scale assessments. In L. Rutkowski, M. von Davier, & D. Rutkowski (Eds.), Handbook of international large-scale assessment: Background, technical issues, and methods of data analysis (pp. 229–258). New York: Chapman and Hall/CRC.
  • Newell, A. D., Tharp, B. Z., Vogt, G. L., Moreno, N. P., & Zientek, L. R. (2015). Students’ attitudes toward science as predictors of gains on student content knowledge: Benefits of an after-school program. School Science and Mathematics, 115(5), 216–225. http://dx.doi.org/10.1111/ssm.12125
  • Nugent, G., Barker, B., Welch, G., Grandgenett, N., Wu, C., & Nelson, C. (2015). A model of factors contributing to STEM learning and career orientation. International Journal of Science Education, 37(7), 1067–1088. http://dx.doi.org/10.1080/09500693.2015.1017863
  • OECD. (2006). Evolution of student interest in science and technology studies (Policy Report). Paris: OECD Publishing.
  • OECD. (2009). Equally prepared for life? How 15 year old boys and girls perform in school. Paris: OECD Publishing.
  • OECD. (2012). Are students more engaged when schools offer extracurricular activities? PISA in Focus 18. Paris: OECD Publishing.
  • OECD. (2014). Scaling procedures and construct validation of context questionnaire data. Paris: OECD Publishing.
  • OECD. (2016a). PISA 2015 Results in focus, PISA in Focus 67. Paris: OECD Publishing.
  • OECD. (2016b). PISA 2015 assessment and analytical framework: Science, reading, mathematic and financial literacy, PISA. Paris: OECD Publishing.
  • OECD. (2016c). PISA 2015 Results (Volume I): Excellence and equity in education, PISA. Paris: OECD Publishing.
  • Pereira, D., Perales, M. J., & Bakieva, M. (2016). Trends analysis in the investigations realised from the data of the PISA Project PISA. Relieve, 22(1), 1–17. http://dx.doi.org/10.7203/relieve.22.1.8248
  • Potvin, P., & Hasni, A. (2014). Interest, motivation and attitude towards science and technology at K-12 levels: A systematic review of 12 years of educational research. Studies in Science Education, 50(1), 85–129. http://dx.doi.org/10.1080/03057267.2014.881626
  • R Core Team. (2017). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Rutkowski, D., & Rutkowski, L. (2013). Measuring socioeconomic background in PISA: One size might not fit all. Research in Comparative and International Education, 8(3), 259–278. http://dx.doi.org/10.2304/rcie.2013.8.3.259
  • Schleicher, A. (2016). PISA excellence and equity. PISA day: Global lessons for the U.S. Education system and economy. Alliance for excellent education. Paris: OECD Publishing.
  • Schunk, D. H. (1991). Self-efficacy and academic motivation. Educational Psychologist, 26, 207–231. http://dx.doi.org/10.1207/s15326985ep2603&4 2
  • Schwartz, S. (1994). The fallacy of the ecological fallacy: The potential misuse of a concept and the consequences. American Journal of Public Health, 84, 819–825. http://dx.doi.org/10.2105/AJPH.84.5.819
  • Stanat, P., Artelt, C., Baumert, J., Klieme, E., Neubrand, M., Prenzel, M., . . . Schneider, W. (2002). PISA 2000: Overview of the study Design, method and results. Berlin: Max Planck Institute for Human Development.
  • Täht, K., & Must, O. (2013). Comparability of educational achievement and learning attitudes across nations. Educational Research and Evaluation, 19(1), 19–38. http://dx.doi.org/10.1080/13803611.2012.750443
  • Torney-Purta, J., & Amadeo, J. A. (2013). International large-scale assessments: Challenges in reporting and potentials for secondary analysis. Research in Comparative and International Education, 8(3), 248–258. http://dx.doi.org/10.2304/rcie.2013.8.3.248
  • Willms, J. D. (2006). Learning divides: Ten policy questions about the performance and equity of schools and schooling systems. Montreal: UNESCO Institute for Statistics.