Deteami research-transference project: natural language processing technologies to the aid of pharmacy and pharmacosurveillance

  1. Peral, Javier
  2. Pérez Ramírez, Alicia
  3. Casillas Rubio, Arantza
  4. Díaz de Ilarraza Sánchez, Arantza
  5. Gojenola Galletebeitia, Koldo
  6. Mendarte, Luis
  7. Oronoz Anchordoqui, Maite
Revista:
Procesamiento del lenguaje natural

ISSN: 1135-5948

Año de publicación: 2016

Número: 57

Páginas: 155-158

Tipo: Artículo

Otras publicaciones en: Procesamiento del lenguaje natural

Objetivos de desarrollo sostenible

Resumen

The goal of the Deteami project is to develop tools that make clinicians aware of adverse drug reactions stated in electronic health records of the clinical digital history. The records produced in hospitals are a valuable though nearly unexplored source of information among others due to the fact that are tough to get due to privacy and confidentiality restrictions. To leverage the clinicians work of reading and analyzing the health records looking for information about the health of the patients, in this project we explore the records automatically, identify among others disorder and drug entities, and infer medical information, in this case, adverse drug reactions. In this project a research-framework was settled with the Galdakao-Usansolo and Basurto Hospitals from Osakidetza (the Basque Health System). Osakidetza provided both the texts and the final user feedback, as well as, specialists that annotate the corpora, an in this way, we obtained a gold-standard.

Información de financiación

This work was partially supported by the Spanish Ministry of Science and Innovation (EXTRECM: TIN2013-46616-C2-1-R, TADEEP: TIN2015-70214-P) and the Basque Government (DETEAMI: M inistry of Health 2014111003, IXA Research Group of type A (2010-2015), ELKAROLA: KK-2015/00098).

Financiadores

Referencias bibliográficas

  • Averbuch, M., T.H Karson, B. Ben-Ami, O. Maimon, and L. Rokach. 2004. Context-sensitive medical information retrieval. MedInfo, page 282.
  • Carrero, F.J., J. Carlos Cortizo, J.M. Gómez, and M De Buenaga. 2008. In the development of a spanish metamap. In Proceedings of the 17th CIKM conference, pages 1465-1466. ACM.
  • Chapman, W.W., W. Bridewell, P. Hanbury, G.F. Cooper, and B.G. Buchanan. 2001. A simple algorithm for identifying negated findings and diseases in discharge summaries. Journal of biomedical informatics, 34(5):301-310.
  • Costumero, R., F. Lopez, C. Gonzalo-Martín, M. Millan, and E. Menasalvas. 2014. An Approach to Detect Negation on Medical Documents in Spanish. In Brain Informatics and Health. Springer, pages 366-375.
  • Dalianis, H., M. Hassel, A. Henriksson, and M. Skeppstedt. 2012. Stockholm EPR corpus: A clinical database used to improve health care. In Swedish Language Technology Conference, pages 17-18. Citeseer.
  • Friedman, C., N. Sager, E.C. Chi, E. Marsh, C. Christenson, and M. S. Lyman. 1983. Computer Structuring of Free-Text Patient Data. In Symposium on Computer Applications in Medical Care, pages 688-691. American Medical Informatics Association.
  • Henriksson, A., M. Kvist, H. Dalianis, and M. Duneld. 2015. Identifying adverse drug event information in clinical notes with distributional semantic representations of context. Journal of biomedical informatics, 57:333-349.
  • L. Padró. 2011. Analizadores Multilingües en freeling. Linguamatica, 3(2):13-20, December.
  • Oronoz, M., A. Casillas, K. Gojenola, and A. Pérez. 2013. Automatic Annotation of Medical Records in Spanish with Disease, Drug and Substance Names. Lecture Notes in Computer Science, 8259:536-547.
  • Oronoz, M., K. Gojenola, A. Pérez, A. Díaz de Ilarraza, and A. Casillas. 2015. On the creation of a clinical gold standard corpus in spanish: Mining adverse drug reactions. Journal of Biomedical Informatics, 56(0):318-332.
  • Taira, R., S. Soderland, and R. Jakobovits. 2001. Automatic structuring of radiology free-text reports 1. Radiographics, 21(1):237-245.
  • Tsuruoka, Y., Y. Tateishi, J. Kim, T. Ohta, J. McNaught, S. Ananiadou, and J. Tsujii. 2005. Developing a robust part-of-speech tagger for biomedical text. Advances in informatics, pages 382-392.
  • Vossen, P., E. Agirre, N. Calzolari, C. Fellbaum, S. Hsieh, C. Huang, H. Isahara, K. Kanzaki, A. Marchetti, M. Monachini, F. Neri, R. Raffaelli, G. Rigau, M. Tescon, and J. VanGent. 2008. KYOTO: a System for Mining, Structuring and Distributing Knowledge across Languages and Cultures. In Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC'08), pages 23-37, may.