Solving math and science problems in the real world with a computational mind

  1. Olabe Basogain, Juan Carlos
  2. Olabe Basogain, Miguel Angel
  3. Basogain Olabe, Xabier
  4. Maiz Olazabalaga, Inmaculada
  5. Castaño Garrido, Carlos Manuel
Revue:
NAER: Journal of New Approaches in Educational Research

ISSN: 2254-7339

Année de publication: 2014

Volumen: 3

Número: 2

Pages: 75-82

Type: Article

DOI: 10.7821/NAER.3.2.75-82 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

D'autres publications dans: NAER: Journal of New Approaches in Educational Research

Objectifs de Développement Durable

Résumé

This article presents a new paradigm for the study of Math and Sciences curriculum during primary and secondary education. A workshop for Education undergraduates at four different campuses (n=242) was designed to introduce participants to the new paradigm. In order to make a qualitative analysis of the current school methodologies in mathematics, participants were introduced to a taxonomic tool for the description of K-12 Math problems. The tool allows the identification, decomposition and description of Type-A problems, the characteristic ones in the traditional curriculum, and of Type-B problems in the new paradigm. The workshops culminated with a set of surveys where participants were asked to assess both the current and the new proposed paradigms. The surveys in this study revealed that according to the majority of participants: (i) The K-12 Mathematics curricula are designed to teach students exclusively the resolution of Type-A problems; (ii) real life Math problems respond to a paradigm of Type-B problems; and (iii) the current Math curriculum should be modified to include this new paradigm.

Références bibliographiques

  • ACT (2013). American College Testing. Retrieved from https://www.act.org
  • Ariely, D. (2009). Predictably Irrational. New York, NY. HarperCollins
  • Bälter, O., Enström, E., & Klingenberg, B. (2013). The effect of short formative diagnostic web quizzes with minimal feedback. Comput. Educ. 60, 1 (January 2013), 234-242. doi: 10.1016/j.compedu.2012.08.014
  • Basogain, X., Olabe, M. A., Olabe, J. C., Maiz, I., & Castaño, C. (2012). Mathematics Education through Programming Languages. 21st Annual World Congress on Learning Disabilities, 553-559.
  • Becker, K. A. (2003). History of the Stanford-Binet Intelligence scales: Content and psychometrics. Stanford-Binet Intelligence Scales, Fifth Edition Assessment Service Bulletin, 1.
  • Binet, A. & Simon, Th. (1916). The development of intelligence in children: The Binet-Simon Scale. Baltimore: Williams & Wilkins company. doi: 10.1037/11069-000
  • Carpenter, P. A., Just, M. A. & Shell, P. (1990). What One Intelligence Test Measures: A Theoretical Account of the Processing in the Raven Progressive Matrices Test. Psychological Review, 73 (3), 404-431. doi: 10.1037/0033-295X.97.3.404
  • Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54, 1-22. doi: 10.1037/h0046743
  • Collins, A. & Halverson, R. (2009). Rethinking Education in the Age of Technology: The Digital Revolution and the Schools. New York: Teachers College Press.
  • Disessa, A. (2000). Changing minds: Computers, learning, and literacy. Cambridge: MIT Press.
  • Fiske, S. T., Gilbert, D. T., & Lindzey, G. (Eds.) (2010). The handbook of social psychology (5th edition). New York: Wiley.
  • Forbes, A. R. (1964). An item analysis of the advanced matrices. British Journal of Educational Psychology, 34, 1-14. doi: 10.1111/j.2044-8279.1964.tb00632.x
  • Jensen, A. R. (1987). The g beyond factor analysis. In R. R. Ronning, J. A. Glover, J. C. Conoley, & J. C. Witt (eds.). The influence of cognitive psychology on testing (pp. 87-142). Hillsdale: NJ: Erlbaum.
  • Kahneman, D. (2003). Maps of Bounded Rationality: Psychology for Behavioral Economics. The American Economic Review, 93 (5), 1449-1475. doi: 10.1257/000282803322655392
  • Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The Scratch Programming Language and Environment. ACM Transactions on Computing Education, 10 (4), 15 pp. doi: 10.1145/1868358.1868363
  • Marshalek, B., Lohman, D. F., & Snow, R. E. (1983). The complexity continuum in the radix of hierarchical models of intelligence. Intelligence, 7, 107-127. doi: 10.1016/0160-2896(83)90023-5
  • National Research Council (2010). Committee for the Workshops on Computational Thinking: Report of a workshop on the scope and nature of computational thinking. Washington, DC: National Academies Press.
  • National Research Council (2011). Committee for the Workshops on Computational Thinking: Report of a workshop of pedagogical aspects of computational thinking. Washington, DC: National Academies Press.
  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.
  • Papert, S. (1991). Situating constructionism. In I. Harel, & S. Papert (Eds.), Constructionism. 1-11. Norwood, NJ: Ablex.
  • Pisa (2009). PISA 2009 key findings. OECD Programme for International Student Assessment (PISA). Retrieved from http://www.oecd.org/pisa/pisaproducts/pisa2009/pisa2009keyfindings.htm
  • Raven, J. C. (1962). Advanced Progressive Matrices, Set II. London: H. K. Lewis.
  • Royal Society. (2012). Shut down or restart: The way forward for computing in UK schools. Retrieved from royalsociety.org/education/policy/computing-in-schools
  • SAT (2013). Scholastic Assessment Test. College Board. Retrieved from http://sat.collegeboard.org/
  • Schwartz, B. (2005). The Paradox of Choice: Why More Is Less. New York: Harper Collins.
  • Scratch (2013). Lifelong Kindergarten Group at the MIT Media Lab. Retrieved from http://scratch.mit.edu/
  • Snap (2013). Mönig, J., & Harvey, B. University of California at Berkeley. Retrieved from http://byob.berkeley.edu/
  • Snow, R. E., Kyllonen, P. C., & Marshalek, B. (1984). The topography of ability and learning correlations. In R. J. Sternberg (Ed.), Advances in the Psychology of Human Intelligence, Volume 2, (47-103). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Taylor, K., & Rohrer, D. (2010). The effects of interleaved practice. Applied Cognitive Psychology, 24, 837-848. doi: 10.1002/acp.1598
  • Utting, I., Cooper, S., Kolling, M., Maloney, J., & Resnick, M. (2010). Alice, greenfoot and scratch-A discussion. ACM Transactions on Computing Education, 10 (4): 11 pp. doi: 10.1145/1868358.1868364
  • Wechsler, D. (2005). Wechsler Individual Achievement Test 2nd Edition (WIAT II). London: The Psychological Corporation.
  • Wing, J. (2006). Computational thinking. Communications of the ACM, 49 (3), 33-36. doi: 10.1145/1118178.1118215