Contributions of lattice computing to medical image processing

  1. CHYZHYK ---, DARYA
Dirigée par:
  1. Manuel Graña Romay Directeur/trice

Université de défendre: Universidad del País Vasco - Euskal Herriko Unibertsitatea

Fecha de defensa: 26 juillet 2013

Jury:
  1. Gerhard Ritter President
  2. George Caridakis Secrétaire
  3. Michal Wozniak Rapporteur
  4. Georgios Papakostas Rapporteur
  5. Bruno Apolloni-Ghetti Rapporteur
Département:
  1. Ciencia de la Computación e Inteligencia Artificial

Type: Thèses

Teseo: 116084 DIALNET

Résumé

This Thesis is developed along two main axis: The exploration of new computational solutions based on the novel paradigm of Lattice Computing. The application to medical image data in order to obtain new image processing methods, or computed aided diagnosis systems based on image biomarkers. he proposal of Lattice Computing encompasses all computational constructions involving the use of Lattice Theory results and/or operators. In this Thesis, this ambitious scope is reduced to three ¿elds of development of algorithms: Lattice Associative Memories, Dendritic Computing, and Multivariate Mathematical Morphology. Speci¿cally, Lattice Auto-associative Memories play a role in the development of a Lattice Independent Component Analysis (LICA) proposed as a lattice based alternative to the well known Independent Component Analysis (ICA) approach, and in the de¿nition of a reduced ordering in an approach to de¿ne a Multivariate Mathematical Morphology. These issues have been tackled in this Thesis from an application point of view: the diverse tools are applied to several kinds of medical image data. From the medical image processing point of view, the Thesis works on features of anatomical MRI for computer aided diagnosis of Alzheimer¿s disease, on resting state fMRI of Schizophrenia patients, and on CTA data for Abdominal Aortic Aneurysm