Diseño de Experimentos para la Estimación de Parámetros de Modelos de Maniobra Lineales de Buques

  1. Elías Revestido Herrero 2
  2. Francisco J. Velasco González 2
  3. Eloy López García 1
  4. Emiliano Moyano Pérez 2
  1. 1 University País Vasco (UPV/EHU)
  2. 2 University Cantabria
Revue:
Revista iberoamericana de automática e informática industrial ( RIAI )

ISSN: 1697-7920

Année de publication: 2012

Volumen: 9

Número: 2

Pages: 123-134

Type: Article

DOI: 10.1016/J.RIAI.2012.02.006 DIALNET GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: Revista iberoamericana de automática e informática industrial ( RIAI )

Résumé

In this paper we propose an experiment design alternative to the standard zig-zag maneuver in order to estimate parameters of ship linear maneuvering models. In the experiment design is selected the frequency of an input signal using a sensitivity approach. The parameter estimation is performed using prediction error methods together with the Kalman filter. For the evaluation of the designed experiment with the proposed estimator and for the model validation, we propose two cases of study: one in simulation and another one with acquired data in open waters.

Références bibliographiques

  • Abkowitz, M., 1964. Lectures on ship hydrodynamics, steering and manoeuvrability. Tech. rep., Hy-5 Hydrodynamics Department. hydro and Aerodynamics Laboratory.
  • Astrom, K., 1980. Maximum likelihood and prediction error methods. Automatica 16 (5), 551 – 74.
  • Barker, H., Rivera, D., Tan, A., Godfrey, K., 2006. Perturbation signal design. Amsterdam, Netherlands, pp. 6 pp. –.
  • Bertnitsas, M. M., D., R., P., K., 1981. Kt, kq and efficient curves for the wagningen b-series propellers. Tech. rep., Department of Naval Arquitecture and Marine Engineering The University of Michigan.
  • Blanke, M., 1981. Ship propulsion losses related to automated steeering and prime mover control. Ph.D. thesis, The University of Denmark Lyngby.
  • Blanke, M., Knudsen, M., 1999. Optimized experiment design for marine systems identification. Vol. vol.17. Kidlington, UK, pp. 575 – 80.
  • Blanke, M., Knudsen, M., 2006. Efficient parameterization for grey-box model identification of complex physical systems. Amsterdam, Netherlands, pp. 6 pp. –.
  • Braún, M., Rivera, D., Stenman, A., 2001. A model-on-demand’ identification methodology for non-linear process systems. International Journal of Control 74 (18), 1708 – 1717.
  • Clark, I., 2004. Ship Dynamics for Mariners. The Nautical Institute.
  • Clarke, D., P.Gedling, Hine, G., 1983. The application of maneuvering criteria in hull design using linear theory. The Naval Architect, 45–68.
  • Davidson, K. S. M., Schiff, L. I., 1946. Turning and course keeping qualities. In: Transactions of SNAME. Vol. 54.
  • Fossen, T. I., 1994. Guidance and Control of Ocean Marine Vehicles. John Wiley and Sons Ltd.
  • Fossen, T. I., Perez, T., 2004. Marine systems simulator (mss).
  • Gelb, A., 1999. Applied optimal estimation. MIT Press.
  • Goodwin, G., Payne, R., 1977. Dynamic system identification: Experiment design and data analysis.
  • Inoue, S., Kijima, K., 1978. The hydrodynamic derivatives on ship manoeuvrability in the trimmed condition. ITTC 2, 87–92.
  • ITTC, 2005. The manoeuvring committee final report and recommendations to the 24th ITTC. Report in proceedings of the 24th ittc vol 1, International Towing Tank Conference (ITTC).
  • Kallstrom, C., Astrom, K., 1981. Experiences of system identification applied to ship steering. Automatica 17 (1), 187 – 98.
  • Kalman, R. E., 1960. A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering 82, 35–45.
  • Knudsen, M., 1994. A sensitivity approach for estimation of physical parameters. In: SYSID’94.
  • Lewis, E. V., 1989. Principles of Naval Arquitecture. The Society of Naval Architects and Marine Engineers.
  • Ljung, L., 1987. System identification: theory for the user.
  • Nomoto, K., Taguchi, T., Honda, T., Hirano, S., 1957. On the steering qualities of ships. Tech. rep., International Shipbuilding Progress.
  • Oltmann, P., 2003. Identification of hydrodynamic damping derivatives a pragmatic approach. In: MARSIN03.
  • Perdon, P., September 1998. Rotating arm manoeuvering test and simulation or waterjet propelled vessels. In: Proc. International Symposium and Workshop on Force Acting on a Manoeuvering Vessel. Val de Reuil, France.
  • Perez, T., 2005. Ship Motion control Course keeping and roll Stabilisation using rudder and fins. Springer.
  • Perez, T., Fossen, T. I., 2006. Time-domain models of marine surface vessels on seakeeping computations. In: 7th IFAC Conference on Manoeuvring and Control of Marine Craft MCMC. Lisbon, Portugal.
  • Perez, T., Ross, A., Fossen, T. I., 2006. A 4-dof simulink model of a coastal patrol vessel for manoeuvering in waves. In: Manoeuvring and Control of Marine Craft (MCMC 2006). Lisbon.
  • Shields, D., Hodder, S., 1982. Identification of ship dynamics - a comparison of current techniques. Systems Science 8 (2-3), 103 – 113.
  • SNAME, 1950. Nomenclature for treating the motion of submerged body through a fluid. Technical and Research bulletin 1-5, The Society of Naval Architects and Marine Engineers.
  • Soderstrom, T., Stoica, P., 1994. System Identification. Prentice-Hall.
  • Stuart, A., Ord, K., Arnold, S., 1999. Classical Inference and the Linear Model, 6th Edition. Vol. 2A of Kendal’s Advanced Theory of Statistics. Arnold.
  • Van Amerongen, J., 1984. Adaptive steering of ships-a model reference approach. Automatica 20 (1), 3 – 14.
  • Velasco, F. J., Revestido, E., López, E., Moyano, E., 2010. Remote laboratory for marine vehicles experimentation. Computer Applications in Engineering Education. DOI: 10.1002/cae.20444
  • Whicker, L. F., F., F. L., 1958. Free stream cahracteristics of a family of low aspect ratio=control surfaces for applications to ship design. Tech. rep., 933 DTRC.