
The VLDB Journal (1997) 6: 282–295 The VLDB Journal
c© Springer-Verlag 1997

EXACT: an extensible approach to active object-oriented databases
Oscar D́ıaz, Arturo Jaime

Departamento de Lenguajes y Sistemas Informáticos, Universidad del Paı́s Vasco / Euskal Herriko Unibertsitatea, Apd. 649, 20080 San Sebastián, Spain;
e-mail:<jipdigao,jipjaela>@si.ehu.es

Edited by Y. Vassiliou. Received May 26, 1994 / Revised January 26, 1995, June 22, 1996 / Accepted November 4, 1996

Abstract. Active database management systems (DBMSs)
are a fast-growing area of research, mainly due to the large
number of applications which can benefit from this active
dimension. These applications are far from being homo-
geneous, requiring different kinds of functionalities. How-
ever, most of the active DBMSs described in the literature
only provide afixed, hard-wiredexecution model to sup-
port the active dimension. In object-oriented DBMSs, event-
condition-action rules have been proposed for providing ac-
tive behaviour. This paper presents EXACT, a rule manager
for object-oriented DBMSs which provides a variety of op-
tions from which the designer can choose the one that best
fits the semantics of the concept to be supported by rules.
Due to the difficulty of foreseeing future requirements, spe-
cial attention has been paid to making rule management eas-
ily extensible, so that the user can tailor it to suit specific
applications. This has been borne out by an implementation
in ADAM, an object-oriented DBMS. An example is shown
of how the default mechanism can be easily extended to
support new requirements.

Key words: Active DBMS – Extensibility – Object-Oriented
DBMS – Metaclasses

1 Introduction

Database management systems are at the heart of current
information system technology. They provide reliable, ef-
ficient and effective mechanisms for storing and managing
large volumes of information in a multiuser environment.
In recent years, there has been a trend in database research
and practice towards increasing the proportion of the seman-
tics of an application that is supported within the database
system itself. Temporal databases, spatial databases, multi-
media databases and database programming languages are
examples of this trend.Active databasescan be considered
as part of this tendency, where the semantics that are sup-
ported reflect theevent-driven behaviourof the domain.

Event-driven behaviour, unlike call-driven behaviour
which is executed when explicitly invoked, is considered as

a reaction to the occurrence of an event such as a data manip-
ulation operation, an interruption, a clock signal, etc. Such
an event signals the potential occurrence of a relevant situ-
ation to which reactions might follow. Non-active databases
rely on embedding the checking for this relevant condition
either in application programs updating the database or in a
special-purpose program which polls the database periodi-
cally to check the database state. The former approach leads
to redundancy, distribution and difficult maintainability as a
result of the check being replicated and/or distributed among
several application programs. As for the second approach,
the drawback lies in ascertaining the polling frequency: if
too high, a great overhead can be caused; if too low, the
relevant condition may not be detected in time, a fact which
could be crucial for some applications.

Active databases support the above application by mov-
ing the reactive behaviour from the application (or polling
mechanism) into the DBMS. This implies that the active
DBMS has to provide some mechanism for users to de-
scribe the reactive behaviour (generally referred to as the
knowledge model), as well as support for monitoring and re-
acting to relevant circumstances (generally referred to as the
execution model)

Event-driven behaviour can support traditional database
functionality (e.g. integrity constraint maintenance, support
for derived data, monitoring of data access and evolution,
access control), as well as application-based tasks (e.g. net-
work management, air-traffic control, tracking, etc). Making
DBMSs active allows a broad range of applications to be
moved from user programs or some sort of polling mecha-
nism to the database. However, this diversity makes it dif-
ficult to find a common knowledge model and execution
strategy which is suitable no matter what application is to
be supported. Thus, as the number of applications requiring
event-driven behaviour increases (and this seems to be the
tendency), flexibility become an essential feature of future
active DBMSs.

As for the knowledge model, event-condition-action rules
(hereafter ECA rules) have been proposed for both object-
oriented (OO) and relational systems, both commercial (e.g.
ORACLE, INFORMIX, INTERBASE) and advanced (Wi-
dom and Ceri 1996). ECA rules have anevent that trig-

283

gers the rule, acondition describing a given situation, and
an action to be performed if the condition is satisfied. In
this way, not only does the system knowhow to perform
operations (as in OO databases), but alsowhen operations
have to be performed. In OO databases, ECA rules have
been modeled asfirst-classobjects, and as such they benefit
from the advantages of the OO approach (Dayal et al. 1988,
Dı́az et al. 1991). Among them, specialization is the most
useful in this context.

As for the execution model, requirements can vary de-
pending on the concept supported by the rule. The seman-
tics of this concept will influence, for example, whether
all rules reacting to a given event should be fired when
this event is detected, or what reaction follows once a rule
fails. However, most of the systems described in the liter-
ature only provide afixed execution model for rules, hard-
wired in the code [e.g. ODE (Gehani and Jagadish 1991), O2
(Medeiros and Pfeffer 1990), Starburst (Widom et al. 1991),
Chimera (Ceri et al. 1996), SAMOS (Gatziu and Dittrich
1994), Sentinel (Chakravarthy et al. 1994)]. This can lead
to ad-hoc solutions or even worse, to complicate the condi-
tion part of the ECA rule with elements whose only purpose
is to achieve the required solution1.

This paper presents EXACT, an EXtensible approach to
ACTive OO DBMSs, which allows the user to choose the
execution model that best fits the semantics of the concept
to be supported. Due to the difficulty of foreseeing future
requirements, special attention has been paid to making ex-
ecution model flexible enough, so that the user can tailor it
to suit specific applications.

Two contentions support this work, namely:

1. It is the user who, besides defining the rules, should spec-
ify how these rules have to be executed. The user knows
the semantics of the concept to be supported which in-
cludes not only the definition of the basic rules but also
control information about how these rules have to be
exploited.

2. Control information rarely refers to individual rules, but
is shared by a set of rules supporting the same concept or
functionality (e.g. integrity constraint maintenance, de-
rived data, etc). Hence, this control information should
be removed from single rules and moved to a higher
level.

Thus, our aim is first to find a set of dimensions to character-
ize the execution model and second, a mechanism exhibiting
the following features:

– flexibility: different sets of rules can have different exe-
cution models, depending on the semantics of the con-
cept to be supported,

– declarativeness:to encourage user implication, the exe-
cution model definition should be specified through a set
of parameters rather than by encoding how the desired
execution strategy is actually achieved,

1 A similar situation arises in production systems where the simplicity
of the recognize-and-act cycle forces the user to extend the rule condition
with control information to achieve, for instance, iterations or sequences of
production rules.

– extensibility:the standard execution model can be easily
extended by refining existing features or introducing new
ones.

To provide such features, a mechanism based on metaclasses
has been used. Metaclasses allow the advantages of the OO
paradigm to be applied to the DBMS, since the system itself
is described using classes and methods. In this way, not
only are rules described using an OO approach but so is the
rule-processing strategy.

These ideas have been borne out by EXACT, a fully
developed system built on top of ADAM (Paton 1989,
Dı́az and Paton 1994), an OODBMS implemented in
ECLiPSe Prolog2 with disk-resident and multiuser features
provided through MegaLog (Bocca 1991).

It is the successor of a rule system described in Dı́az et
al. (1991), where the focus is on providing rules asfirst-class
objects: rules are defined and treated as any other object in
the system. Here however, the main issue is not rule defi-
nition as such but the rule’s execution model, where topics
such as scheduling, conflict resolution strategies or coupling
modes are addressed. The advantages of the approach are
illustrated by an example, where an initial rule management
strategy is enlarged to support new requirements.

The rest of this paper is organized as follows. The need
for flexible rule systems is first presented. Section 3 ad-
dresses the description and support for the knowledge model.
However, the main contribution of the paper is based on the
description of the execution model and its implementation
in EXACT, both topics covered in Sect. 4. An example illus-
trating the advantages of the approach is shown in Sect. 5.
Related research is the focus of Sect. 6. Finally, conclusions
are presented.

2 Why flexible rule systems?

Flexibility means the capability of a system to cope with dif-
ferent application requirements. No drastic changes should
be involved – the basic model should be retained, but ex-
tensions made to the core to cater for new requirements.
To motivate the need for flexibility, a set of applications ex-
hibiting event-driven behaviour are described. The emphasis
is upon the different requirements posed to the active mech-
anism by what needs to be represented (i.e. the knowledge
model) and in how it has to be handled (i.e. the execution
model). For a more complete account and examples see Pa-
ton et al. (1993).

2.1 Integrity constraint maintenance

• Purpose. Integrity constraints can be seen as restrictions
which must hold among different pieces of information to
keep the database consistent. Constraint maintenance was
one of the first applications to be supported using active
mechanisms. Work has been described both for the relational
model (Ceri and Widom 1990) and the OO model (Urban
and Desiderio 1991; D́ıaz 1992).

2 ECLiPSe is a trademark of ECRC (European Computer-Industry Re-
search Center).

284

• Requirements for the knowledge model

– description of the integrity constraint to be monitored,
– support for exceptions, i.e. objects for which the in-

tegrity constraint does not apply. CAD/CAM applica-
tions commonly require this feature where the constraint
applies to the whole class, except for some given objects
(Buchmann and Dayal 1988),

– description of the possible reaction to follow if the con-
straint is violated. This can be abortion of the transac-
tion, a compensating action to restore the database to a
valid state, or just a warning depending on the level of
importance of the constraint.

• Requirements for the execution model

– all integrity constraints affected by a database update
should be checked in turnuntil one is falsified. Once a
constraint is violated, there is no point in prolonging the
checking process,

– due to the former point, if different integrity constraints
have to be checked, an order can be established based
on the complexity of each constraint: the higher its com-
plexity, the lower its priority. This assumes that each
false check aborts the transaction,

– once a database update occurs which affects one or more
constraints, the integrity checking can begin either im-
mediately, be deferred till the transaction ends, or both.
The appropriate option depends on the kind of constraint
to be maintained,

– if a constraint is violated and no repairing action is avail-
able, the transaction must be aborted.

2.2 Derived-data support

• Purpose. The termderived datacan be defined as data
which is obtained from other data (i.e. the derivers) through
calculations, but which looks like they are stored. Derived
data has been used to support multiple views, capture data
semantics or hide database evolution. Recently, some authors
have proposed active rules as a mechanism for supporting
derived data. In Ioannidis and Sellis (1992), a proposal is
made for a general framework for the study of conflict res-
olution when alternative derivation criteria are available. In
Etzion (1993), a rule approach is also used. Here, the focus
is on finding flexible consistency modes between the derived
data and its derivers.

• Requirements for the knowledge model

– the derivation expression involving the derived data and
the derivers

• Requirements for the execution model

– if the derived data can be calculated following different
expressions, only one should be used. The choice can be
based on accurateness and reliability,

– if, once a data expression is selected, the process runs
into problems (e.g. the rule fails due to a lack of suitable
data), the system can try the next derivation expression,
if available,

– if derived data is materialized (i.e. stored) rather than
calculated on demand, an update on any of its derivers
causes an update on the derived data. The latter update
can occur at different moments, depending on the seman-
tics of the application. Either the database state should al-
ways be consistent with the derivation criteria and, there-
fore, derived data should be updated immediately, or
derivation expressions are complex and time-consuming
to enforce; thus, a suitable solution could be to calcu-
late the derived data once at the end of the transaction,
regardless of the number of updates in its derivers.

2.3 Dynamic display support

• Purpose.Graphical database interfaces allow some portion
of the data stored in the database to be displayed for brows-
ing or manipulation. However, there is no guarantee that
while this data is presented on screen the extension of the
database will remain unchanged. Thus, changes to database
objects which are depicted on screen can lead to inconsis-
tencies between the data which are stored and that which are
displayed. Dynamic displays remove such inconsistencies by
propagating changes to the state of the database to the dif-
ferent interfaces where the affected data is being displayed.
In Dı́az et al. (1994), an approach is presented to support
this application by using active rules.

• Requirements for the knowledge model

– description of the data to be monitored, i.e. the data on
the display. Unlike previous applications where the de-
scription of the data to be monitored can be established at
the class level (e.g. salary of employees), here, it would
be very costly to monitor the entire class, since, fre-
quently, only few instances are on display. Thus, we are
faced with the need of defining the monitor at the in-
stance level rather than at the class level.

– specification of the reaction to follow if the data are
updated. The reaction consists of propagating the update
to the displays where these data is being shown. Thus, the
external or internal identifier of the displays is required
to propagate the update.

• Requirements for the execution model

– if an update on a display does not end successfully (e.g.
due to communication problems), a message can be is-
sued, and the propagation process be continued with the
next display. Failure does not cause an interruption of
the whole process.

– the semantics of the displayed data determines the fre-
quency of display updating: for critical data (e.g. stock
market), updates on the display should be made imme-
diately once the data has been modified; for non-critical
data (e.g. booking applications), display updating can be
delayed till the end of the transaction. Here, the final re-
sult is provided rather than keeping the screen updated
as changes happen. If displaying is a slow process, con-
currency can be enhanced by running this process in a
separate but commit-dependent transaction (i.e. the dis-
playing transaction commits only if the updating trans-
action ends successfully). However, since this separate

285

transaction has some effects visible from outside, the
user should be somehow warned that the update is not
permanent till the updating transaction commits (e.g. by
showing transient and committed data in different col-
ors). If the transaction finally fails, a contingency action
should follow, where the data formerly on the display
are re-established.

3 Knowledge model description: an OO approach

If complete flexibility is to be provided, both the knowledge
model and the execution model have to be specified using
an OO approach. The OO approach, through specialization
and modularity, is well-placed to achieved our aim of flex-
ibility. The OO paradigm provides a different approach to
system design. Whereas procedural design emphasizes the
decomposition of the problem into a set of tasks to be ex-
ecuted sequentially, OO design focuses on the entities in-
volved and how they interact. Thus, to provide an event-
driven behaviour in the context of an OODBMS, a primary
requirement is to identify the significant entities and their
interactions.

A common approach to the knowledge model of event-
driven behaviour is through ECA rules. ECA rules have an
eventthat triggers the rule, acondition describing a given
situation, and anaction to be performed if the condition is
satisfied. Thus, the description of event-driven behaviour is
supported by two entities:the event, which is a description
of a specific situation to which reactions may be necessary,
andthe rule, which describes both when and how the system
reacts to an event.

Following an OO approach, an entity description in-
cludes both structural (i.e. attributes) and behavioral (i.e.
methods) features. The next subsection gives a detailed de-
scription of the rule and event entities. Here, we assume
users define active behaviour by creating the appropriate
event and rule objects. No rule language as such is provided.

3.1 The rule object

Representing rules as objects is currently common practice.
This approach can be illustrated by the pioneering work of
HiPAC (Dayal et al. 1988), where ECA rules are proposed.
In EXACT, the structural description of rules involves the
following attributes:

– the event, which holds the object identifier of the event
causing the rule to be fired.

– the condition to be verified. The condition is a set of
queries to check that the state of the database is suitable
for action execution.

– the action, which is a set of operations that can have
different aims, e.g. enforcement of integrity constraints,
user intervention, propagation of methods, etc. Condi-
tion and action definitions can refer to the event occur-
rence where the parameters of the event can be obtained
(e.g. the method selector, the method arguments, the re-
ceiver, the sender) using the system-provided predicate
eventoccurrence. The result of the condition can also

class name

defined attributes

defined methods action
condition

event

priority
is_it_enabled(+) method redefinition

disabled_for already_propagated

is a

rule
system

rule
integrity dynamic_display

rule

rule
generic

firing
evaluation_condition

execution_action

evaluating_condition (+)

Fig. 1. The rule hierarchy in EXACT

be passed to the action part through theconditionresult
predicate.

– priority which is a number reflecting the importance of
the rule

– is it enabledis a boolean attribute that describes the sta-
tus of the rule, i.e. whether the rule is activated or not.
The rule can be ‘switched on’ or ‘switched off’ just by
updating the value of this attribute.

As for the behaviour, it is achieved through the following
methods:

– firing , which involves the evaluation of the rule and, if
satisfied, the execution of its action.

– evaluating condition, which checks whether the rule’s
condition is satisfied.

– executingaction, which executes the rule’s action.

As any other object, rules are created by sending the message
new to its class. For example, to create an instance of the
classgenericrule, whose identifier is returned in the variable
RuleOID, the following message is sent:

:- new([RuleOID,[
event([8#ms_event]),
condition([% ADAM query]),
action([% ADAM program]),
priority([4]),
is_it_enabled([yes])

]]) => generic_rule.

where8#mseventis the object identifier of the event whose
occurrence makes this rule to be fired.

All these features are collected in the classgenericrule,
which can subsequently be specialized to account for new
requirements: subclassessystemrule, integrity rule and dy-
namicdisplayrule are introduced where method (e.g.eval-
uating condition) and/or attributes (e.g.alreadypropagated)
were added or specialized. A detailed description of each
subclass is out of the scope of this paper. Figure 1 shows
part of the current rule hierarchy in EXACT.

286

event
generic

participates_in
rules

set_alarm
remove_alarm

delete(+)

clock

remove_alarm(+)
set_alarm(+)

event

clock_signal

remove_alarm(+)
set_alarm(+)

scope

exception_number

event
exception

event
sequence

checking(+) checking(+)

conjunction
event

event

set_alarm(+)
remove_alarm(+)

inheritable_ms
defined attributes

defined methods

class name

is a

initiator

terminator

initiator

terminator

event
single

event

remove_alarm(+)
set_alarm(+)

ms

active_method
when

active_class

active_object

diary
composed_by

event

composition

set_alarm(+)
remove_alarm(+)

checking

composite

 (+) method redefinition
Fig. 2. The event hierarchy in EXACT

3.2 The event object

Events are not always seen as first-class objects. In Medeiros
and Pfeffer (1990), events are seen as rule attributes and,
hence, cannot have attributes or methods of their own. Al-
though this approach may result in performance gains, it can
compromise the ability to extend the system to cope with
events coming from different places, or which need special
treatment. Furthermore, several reasons can be identified for
having the entityeventdifferent from the entityrule: events
have their own attributes and behaviour, events can be com-
posite and, finally, events can be specialized, giving rise to
the need for hierarchies.

Any kind of event can fire rules and participate in the
specification of composite events, features which are respec-
tively captured by the attributes:

– rules, where the set of rules activated by the event is
kept. It represents the inverse of the attributeeventde-
fined for thegenericrule class, and

– participates in, which holds the object identifiers of the
composite events in which the event is involved.

Moreover, events have their own behaviour, namely:

– set alarm, which makes the corresponding event de-
tectable. That is, it places an ‘alarm’ in the corresponding
event generator. This method is used not when the event
is created, but once the first rule having this event is acti-
vated, so that events whose associated rules are switched
off for long periods do not cause any overhead. Thus,
this method is internally invoked when theis it enabled
rule attribute is set to‘true’ ,

– remove alarm which stops the monitoring of the event.
This happens once no rule is left in the system with this
event,

– deletewhich specializes standard object deletion, since
removal of an event object implies ending the tracking
of this event.

As shown in Fig. 2, this common description is kept
in the genericeventclass. This class needs to be special-
ized, since different attributes and/or methods may be re-
quired for event description, depending on the situation to
be monitored. An initial classification distinguishes between
singleevents(i.e. primitive events) andcompositeevents.

3.2.1 Primitive events

Primitive or single events are classified according to their
event generators. For example,message-sending eventsare
produced by the DBMS when a message is sent,clock events
are generated by the UNIX clock andexception eventsare
signaled by the underlining interruption mechanism. Thus,
the description of an event depends on the situation to be
monitored. In Fig. 2, part of the current event hierarchy is
shown. Here, only the description ofmessage-sending events
is addressed.

Message-sending eventsare described by four attributes
which are kept in themseventclass, namely:

– active method, which holds the name of the method
whose invocation produces the event. In an OO context,
active methodsare not restricted to be update operations
but can be any method defined in the system (e.g.dis-
play, getage, create anewclass ordeletean instance).

287

– when, which describes when the rule should be fired
relative to the execution of theactivemethod: beforeor
after method execution.

– active class. In OO systems, operations (i.e. methods)
are not isolated but are part of the class definition. The
class is not just an argument of the method, but the
method itself is subordinated to the class. This attribute
keeps the class on which the method is defined. In an
early implementation, this attribute was part of the rule
object definition. Despite compromising correctcompos-
ite eventdefinition, this design choice stemmed from the
desire to improve the efficiency of the rule manager by
providing a class-based index to rules. In the current
implementation, rules are indexed by the whole event
rather than theactiveclassalone. In this way, the sys-
tem performance is maintained without compromising
the definition ofcomposite events.

– active objects, which holds the instances to which the
message should be sent for the event to be triggered. It is
an alternative to theactiveclassattribute. This attribute
supports the case where active behaviour is shown by
only a few instances rather than the whole class.

As with any other object in the system, a DBMS-generated
event is created by sending the messagenew to its class.
For example, an event to be detectedbefore sending the
messageput age to a studentinstance, would be created by
the following instruction:

:- new([EventOID,[
when([before]),
active_method([put_age]),
active_class([student])

]]) => ms_event.

As for behavioral features, thesetalarm and removealarm
methods need to be specialized for each kind of single event
so that the idiosyncrasies of the respective event generators
can be considered.

3.2.2 Composite events

Composite events are defined as a disjunction, conjunction,
sequence, etc. of other events, either primitive or compos-
ite. EXACT has a poor support for composite events where
only the sequence construct is provided. Here, composite
events are included only to provide a whole picture of the
system. Semantic (e.g. consumption modes) and efficiency
issues relating to the detection of such events are still un-
resolved problems which have not been the concern of this
research. For a discussion of this topic and complex event
definition languages, see Gatziu and Dittrich (1994), Gehani
et al. (1992), and Chakravarthy et al. (1994).

In EXACT, composite events are described through the
following attributes:

– composition, having as value a sequence of events either
single or composite. It is specified by the user,

– composedby, which holds the events (single or com-
posite) that comprise the event. It is a local attribute,
i.e. only handled by methods associated with the class
compositeevent. The value of this attribute is obtained

from the value of thecompositionattribute. It is thus the
inverse of theparticipatesin attribute,

– diary, in which the event occurrences already detected
and involved in the definition of the composite event
are recorded. It is used to detect when the whole com-
posite event arises. More complex and complete ap-
proaches use Petri nets to support this concept of diary
(Gatziu and Dittrich 1994).

As for behavioral features, whereas primitive events are
directly detected by an event generator, composite events
have to be detected by the event manager itself. Primi-
tive events such as‘before sending the message display to
a student’or ‘it is 12th October 1992’are detected by the
DBMS and the UNIX system, respectively. However, the
composite event‘before sending the message display to a
student on 12th October 1992’can only be detected by the
event manager with the assistance of the diary of events that
have already occurred. This is achieved through the method
checkingwhich has an event as its argument and determines
whether the composite event to which it has been sent has
arisen or not. The attributesinitiator and terminator sup-
port this task. See Chakravarthy et al. (1994) for a complete
account. These features are collected in thecompositeevent
class, and are specialized for each composition primitive as
shown in Fig. 2.

4 Execution model description: on OO approach

Commonly, the execution model is fixed and hard-wired into
the DBMS, an approach which compromises its extensibility,
flexibility and declarativeness. EXACT attempts to enhance
these features first by using an OO approach to describe the
execution model, and secondly by identifying a number of
parameters which can be used to characterize the execution
model. Instead of providing code, the user can declaratively
specify the required execution model by choosing among a
set of pre-established alternatives. If none of these alterna-
tives accommodates the problem, extensions at the behav-
ioral level (i.e. specialization of methods) will be required.

Following an OO approach, an overview of rule process-
ing and the participating entities is first presented. Next, a
set of dimensions to characterize rule processing is given,
and finally, how EXACT supports rule processing is shown.

4.1 Execution model description

Broadly speaking, the execution model indicates how the
system provides quick response through the use of rules to
events generated by some system. The following elements
can be identified in this process:

– the event generatorcan be seen as any system producing
events which may need a special response in terms of
rule triggering. Events can be generated by the DBMS
itself or by any other external system such as a clock or
an application program.

– the event manageris in charge of the management of
events. This includes the setting up of alarms in the ap-
propriate event generator, as well as the detection of
composite events.

288

OCURRENCES
EVENT TRIGGERED

RULES
EVALUATED

RULES
SELECTED

RULESSOURCE
EVENT

SIGNALING EVALUATION SCHEDULING EXECUTIONTRIGGERING

Fig. 3. Execution model algorithm steps

– the event detectoris the mechanism responsible for iden-
tifying events. It signals the happening of event occur-
rences. Normally, it coincides with the event generator.

– the rule manager,where the creation, ordering and num-
ber of rules to be executed are considered.

For the sake of clarity, two further elements can be intro-
duced, namely:

– the event occurrenceis an indicator to signal that the sit-
uation described by an event has been reached. Usually,
the event occurrence includes the current instantiation of
the parameters of the corresponding event (e.g. the actual
arguments of a message).

– the rule instantiationreflects that a given rule has been
awakened by an event occurrence, and its description can
be given as a pair(rule-oid,event-occurrence).

The main interactions among the previous entities are
those corresponding to the following activities:

– creation of an event object, which does not differ from
the creation of any other object. When the first rule hav-
ing this event is activated, the event detector will be
notified to monitor it.

– deletion of an event, which can only be achieved by
previously deleting all rules attached to it. Deletion has
to be notified to the event detector to end the monitoring
of this event.

– creation of a rule, which differs from the normal creation
procedure in two issues. First, a call can be made to
the rule manager to assign the static rule priority (see
below). Second, if the rule isawakenwhen it is created,
the system checks whether the associated event is being
monitored. If not, the system begins to monitor it.

– deletion of a rule, which besides the standard procedure
for deleting objects, stops monitoring the rule’s event if
no other rules use that event.

– happening of an event occurrence. Loosely speaking, this
corresponds to what is known as the execution model
algorithm.

The execution model algorithm can be seen as based on
the following phases (see Fig. 3):

1. thesignalingphase refers to the appearance of anevent
occurrencecaused by an event source,

2. thetriggeringphase takes the events produced so far, and
triggers the corresponding rules. The association of a rule
with its event occurrence forms arule instantiation,

3. theevaluationphase evaluates the condition of the trig-
gered rules. Therule conflict setis formed from all rule
occurrences whose conditions are satisfied,

4. theschedulingphase indicates how the rule conflict set
is processed,

5. the executioncarries out the actions of the chosen rule
instantiations. During action execution other events can
in turn be signaled, which may producecascadedrule
firing.

These phases are not necessarily executed contiguously,
but depend on theEvent-condition and Condition-action
coupling modes. The former determines when the condi-
tion is evaluated relative to the event that triggers the
rule. The Condition-actioncoupling mode indicates when
the action is to be executed relative to the evaluation of
the condition. The options for coupling modes most fre-
quently supported are immediate, deferred and detached
(Dayal 1989). Here, we also propose to use a variation of the
deferred mode: theuser-invokedcoupling mode, whereby
the condition (action) is evaluated (executed) at a user-
specified time after the event (condition) has been signaled
(evaluated). A similar effect is also supported by Starburst
(Widom and Finkelstein 1990), where users can invoke rule
processing within a transaction by issuing special com-
mands: theprocess rules, process ruleset Sandprocess rule
R commands invoke the rule processing for the whole trig-
gering rule set, a given subsetS or a unique ruleR, respec-
tively. However, it is worth noticing that, in our proposal,
the possibility for a rule to be considered for execution at
user-required time is a property of the rule class, to be fixed
by the rule’s author rather than being decided by the appli-
cation programmer as in Starburst.

The description shown in Fig. 3 is general enough to
be valid no matter what application is considered. In EX-
ACT, variations on this general framework can be character-
ized along the following modes: scheduling mode, conflict-
resolution mode and error-recovery mode.

Some of the features considered here are clearly not new.
Although they have to be faced by the system designer, these
characteristics are commonly hard-wired in the system code.
Our aim is to make them explicit and, more importantly,
available to the final user who knows the application func-
tionality which should be supported by the execution model.
The alternatives presented are far from exhaustive, but only
those currently provided by EXACT are included.

4.1.1 Scheduling mode

The conflict set is built upon the rule instantiations which are
triggered simultaneously and whose conditions are satisfied
by the current database state. The question is how many of
these rules have to be triggered. Possible answers are:

289

– all rules, here every rule is considered. This behaviour
is exhibited by rules supporting integrity maintenance:
an update on the database is correct onceall constraints
affected by this update are validated or appropriated ac-
tions are found to recover a valid state.

– only one rule, this time only one rule is considered. This
option can be used to support derived data. Each rule can
be seen as supporting a different derivation equation but
only one is used. The rule to be chosen is decided based
on the conflict resolution mode.

There is also the question ofrule cascading, i.e. what hap-
pens if event occurrences have arisen in the middle of a
rule’s action. An option is to suspend the current call and
recursively initiate a new instantiation of the execution al-
gorithm where new rule occurrences triggered by this event
occurrence are considered. Another alternative is to gather
all event occurrences in abag which would be considered
in a later step, but the current call is not interrupted. POST-
GRES and Starburst can be seen as examples of the recur-
sive and iterative approach, respectively. EXACT follows a
recursive approach.

4.1.2 Conflictresolution mode

This mode addresses the question of how is the next rule
to be fired chosen if several rule instantiations are avail-
able? This topic has received much attention among the ex-
pert system community, as it is considered fundamental to
understanding and controlling the behaviour of the whole
system. Indeed, rule order can strongly influence the result,
and reflects the kind of reasoning followed by the system. In
databases, several reasons motivate the availability of a clear
and powerful mechanism for conflict resolution, namely:

– rule order can influence the final database state, and have
an important impact on performance. Ensuring confluent
rule sets (i.e. rules where the order in which they are
fired does not have any influence on the final database
state) is a matter of active research (Aitken et al. 1992);

– the number of rules can be large, leading to complex
interactions which are difficult to foresee and understand,

– a potentially larger number of users than in expert sys-
tems can add rules to the system. Then, it is paramount
for the rule’s authors to have clear guidelines and under-
standing concerning the control of rules.

– different applications impose distinct strategies for con-
flict resolution. Although this point is also relevant to
expert systems [e.g. OPS5 (Brownston et al. 1985) pro-
vides two conflict resolution strategies, known as LEX
and MEA], it is even more important for active databases
where the applications to be supported can be very di-
verse. An enlightening example can be found in Ioan-
nidis and Sellis (1992) where virtual attributes can be
obtained from distinct derivation expressions in the form
of rules. When several derivation expressions are avail-
able for the same virtual attribute, a conflict resolution
strategy (referred to as resolution criterion) is applied
based on the semantics of the attribute itself. Different
criteria can be followed: a value-based criterion, where
the value assigned to the virtual attribute is determined

based on properties of the generated values themselves,
and a rule-based criterion, where the value assigned is
chosen based on properties of the rule that generates the
value.

Despite these remarks, no active DBMS provides a flexible,
easy-to-customize conflict resolution mechanism. To the best
of our knowledge, conflict resolution in the active DBMSs
described in the literature is always fixed, hard-wired into the
implementation. So far, rule priority is the only mechanism
available to reflect the application semantics in the conflict
resolution phase, but even how priority is being used is not
free from some criticism, as presented below.

In most of the active DBMSs described in the literature,
the order in which simultaneously triggered rules are pro-
cessed is based on an attributepriority given bythe userfor
eachsingle rule when it is created. This approach suffers
from the following drawbacks:

1. The priority is assigned by the rule designer after some
consideration. The nature of this process is not recorded
in the database, so it can happen that rules supporting
the same functionality are assigned priorities based on
different criteria followed by the various authors of the
individual rules. As an example, consider integrity con-
straints. On the assumption that a constraint is violated,
the update is rejected, then, important performance gains
can be achieved by ordering constraint checking based
on the complexity of the constraint to be verified. How-
ever, normally, this criterion is synthesized in a priority
number given by the user. In a multiuser environment
where competing integrity constraints can be defined by
different users, to have a shared and clear understanding
of the rationale for priority assignment would greatly en-
hance the coherence of the system. If priority assignment
is supported by the system, not only is the soundness of
the system improved but it also would relieve the rule
designer of this burden.

2. A per-rule priority mechanism may not be appropriate. In
large rule sets, rule-based priority can be a too low-level
mechanism, making it difficult to ascertain the repercus-
sion of assigning a given priority to the whole flow of
control. Different levels of priority can help here, where
higher levels are based on the functionality being sup-
ported rather than being based on the rules themselves –
after all, rules are just an implementation mechanism. For
example, rules supporting integrity constraints can have a
higher priority as a whole than rules supporting dynamic
displays. That is, the priority is established at the con-
ceptual level: integrity maintenance has a higher priority
than keeping displays coherent. Here, rule-based priority
can be used to establish the order among rulessupport-
ing the same application. This provides different levels
of abstraction to establish priority among rules, helping
in understanding, structuring and controlling rule pro-
cessing. Furthermore, concept-based priorities constitute
a clearer way of stating the rational behind the setting-up
of priorities. The priority is established at the level of the
concept (e.g. constraint maintenance), and afterwards, if
required, at the level of the rule (e.g. salaries cannot de-
crease). However the latter is subordinated to the priority
of the concept. Such an approach allows reasoning about

290

priorities to be done at the conceptual level (i.e. the rule
class) rather that at the implementation level (i.e. the rule
instances).

3. Priority is set at rule creation time. However, for some
concepts to be supported using rules, the parameters to
be considered which establish a rule’s order cannot be
known until execution time. For instance, in real-time
databases, the workload of the system can be decisive
when choosing the most appropriate rule. Production sys-
tems such as OPS5 are another example where rule or-
der is based not only on a priority, but on a dynamic
parameter: the recency of the elements instantiating the
condition.

EXACT attempts to overcome these disadvantages by means
of the following mechanisms:

– a concept-based priority which is decided by the designer
according to the semantics and time requirements of the
concept to be supported using rules;

– a rule-based priority which is subordinated to the concept-
based one (thepriority attribute);

– a priority function which sets the rule’s priority. This
function is taken into account at rule creation time, and
aims to make explicit and coherent the criteria consid-
ered in assigning priorities. Being invoked at compile
time, this function does not cause any overhead. This
function is defined at the class level and therefore takes
into consideration concept-based features;

– a conflict resolution strategy to be considered at exe-
cution time. Besides a rule’s priority, other parameters
obtained at execution time (e.g. current workload, re-
cency of the instantiation, etc.) are taken into account.
By default, only a rule’s priority is considered. Except
for the default, the checking of parameters at execution
time does incur some performance penalty.

4.1.3 Errorrecovery mode

During the execution phase, where actions of the chosen
rule occurrence are carried out, this dimension contemplates
what to do if an error condition is produced during this
phase. Most systems just abort the transaction, as this is
the standard behaviour in databases. However, other alter-
natives can be more convenient, as suggested in Hanson and
Widom (1993), namely, to terminate execution of that rule
and continue rule processing, to return to the state preceding
rule processing and resume database processing, or to restart
rule processing. Here, the following alternatives have been
considered:

– abort, which cancels the whole execution;
– ignore this rule. The execution of the rule is resumed

and rule processing continues. As an example, this op-
tion can be appropriated to support dynamic displays
where rules are used to propagate database updates to
the displays where the affected data is being displayed.
If a communication problem arises while a rule is being
fired, the corresponding display is left unchanged, but
rule processing continues. This option requires the rule
to be fired within a subtransaction, so that if an error
arises the initial state can be recovered;

– contingencyaction. The condition error causes control
to be transferred to the contingency action, which ends
either withabort or retry. The latter means that the con-
dition error was recovered and that control is returned to
the point where the error arose. The user must provide
the contingency action.

4.2 Execution model support in EXACT: the entities

Now the issue is not the description of isolated rules but the
execution model ofa set of rulestaken as a unit.

The idea ofset is supported in OO systems by the con-
cept of class. A class has a twofold definition. On the one
hand, it describes the common features shared by its in-
stances (the class as a template), and on the other hand, a
class can be seen as collecting together a set of instances3

(e.g. theaverageage of people). It is worth noticing that
these properties of the set-as-a-unit apply not only to the
structural features of the set – as it is commonly found in
semantic data models such as SDM (Hammer and McLeod
1981) – but also to its behavioral features. These properties
can then be shared by other sets, i.e. by other classes. Hence,
in the same way that the common description shared by a
set of instances is abstracted at a higher level to form the
class, the common description shared by a set of classes, now
seen as the unit set-of-instances, can be abstracted at a higher
level: the metaclass. A metaclass is a class whose instances
are also classes. Metaclasses not only permit classes to be
stored and accessed using the facilities of the data model,
but also make it possible to refine the default behaviour for
class creation using specialization and inheritance. In this
way, uniformity and extensibility are also available for the
data model.

The execution model can be seen as describing the pat-
tern followed by a set of rules. Thus, the objects describing
the execution model, i.e.eventmanagerand rule manager
objects, are supported as metaclasses, since they describe
how to manipulate a set rather than an individual rule.

4.2.1 The eventmanager object

The detection of composite events is the only behaviour at-
tached to theeventmanagerin the current implementation.
This is supported as part of the metamethodsignal. Creation
of events does not differ from the standard object creation
procedure, so the methodnew provided by the system is
used.

4.2.2 The rulemanager object

In the same way that thegenericrule class holds how to
describe single rules, therule managerkeeps how to de-
scribe the execution model for a rule class. Such description
is achieved through the previously introduced dimensions
which are supported by the following attributes (better said,
meta-attributes): thee-c coupling attribute, which stands

3 In Smalltalk, these properties are represented by the so-calledclass
variables.

291

instance_of

1#generic_rule
%attribute_values

event([23#event])
condition([%ADAM query])

action([%ADAM program])....................

class
level

instance
level

meta_class
level

generic_rule
%attribute_values

%attribute_definition

%method_definition

e_c_coupling([immediate])
c_a_coupling([immediate])

scheduling_mode([all_fired])

conflict_resolution_mode([...])
priority_function([...])

before([])

event
condition

action

firing
...................

scheduling
new(+)

before
priority_function

conflict_resolution_mode
error_recovery_mode

scheduling_mode
c_a_coupling

e_c_coupling
% attribute definition

rule_manager

%method_definition

error_recovery_mode([abort])

Fig. 4. The three-level definition in EXACT

for the event-condition coupling mode4; the c-a coupling
attribute, which represents the condition-action coupling
mode; thescheduling mode attribute; theerror recovery
modeattribute; theconflict resolution modeattribute, which
holds the function and parameters to be used to decide
the next rule instantiation to be fired from conflict set; the
priority function attribute, which holds the function to be
followed to assign rule-based priority5, and thebefore at-
tribute, whose value is another rule class. It supports a rela-
tive application-based priority. Notice that, unlike previous
approaches, coupling modes are specified at the class level
rather than at the instance level (i.e. rule instances). This is
akin to our contention that control information rarely refers
to single rules, but rather depends on the concept being con-
sidered, which is reflected in the rule class.

As for the behavioral features, three main meta-methods
are provided:new, triggering and scheduling. The former
is used to create rule instances, which is a specialization of
the standard creation procedure provided by ADAM. Besides
the default creation, introducing a new rule instance of class
C requires establishing its priority. If none has been given
by the user, the rule-basedpriority function of classC is
applied.

Other methods (e.g.evaluating all conditions) have
been defined, but they are not used globally (i.e. they do
not belong to the class interface). Their only purpose is to
enhance modularity and re-use. Indeed, being supported as
methods, these phases can subsequently be specialized to
cope with new, unforeseen requirements.

A rule instance provides the values for the attributes de-
scribed in its class (e.g. the rule’s condition). Likewise, a rule
class provides the values for the meta-attributes described

4 The detached coupling is not implemented.
5 This function, defined by the user, is invoked at rule creation time

to establish priorities based on structural features of the rule (i.e. attribute
values).This function can be supported as an attribute due to the features of
Prolog, the underlying language. In other environments it can be supported
as a method.

in its metaclass (e.g. the class’ scheduling mode). There-
fore, there is a three-level definition as shown in Fig. 4: 1)
the metaclass level, where the dimensions of the execution
model shared by the rule classes are factored out in meta-
classes such asrule manager, 2) the class level, where the
characteristics of single rules are factored out (i.e. the knowl-
edge model) and their execution model is defined (e.g. the
genericrule class) and finally, 3) the instance level, where
individual rules are defined (e.g.1#genericrule).

Notice that, while the knowledge model is inherited from
the superclass to its subclasses, the execution model must be
specified for each class, regardless of its superclass. The ex-
ecution model of classC applies to the rule instances which
haveC as its immediate class, in the same way that the value
of the averageage for the personclass is not inherited by
its subclassstudent, which would have its ownaverageage.

A parametrized execution model is provided by the core
of EXACT. When a new rule class is created, a customized
version of this standard model is generated from the above
meta-attributes by the system. This version overrides the
standard execution model for this new rule class.

If these meta-attributes do not convey the functionality
required, the user can himself specialize the methods which
support the execution model. In implementation terms, new
submetaclasses can be defined where inherited methods can
be specialized or overridden. Despite the burden put on the
user, this approach allows the possibility of specializing the
standard execution model to accommodate the special re-
quirements of the concept to be supported using rules.

4.3 Execution model support in EXACT: the process

Once the objects participating in the description of the execu-
tion model have been introduced, rule processing, as shown
in Fig. 3, can be described as a message interaction process
between these objects. Rather than an intricate algorithm,
rule execution is conceived as message interchange among
those entities. Figure 5 shows such interaction namely:

1. Signaling phase. When the occurrence of a primitive
event is realized by the event detector, asignal message
is sent to the event manager, which checks whether some
composite event occurrences may also arise (through the
checkingmethod).

2. Triggering phase. Once the primitive and composite
event occurrences have been detected, the event man-
ager informs the rule manager through the methodtrig-
gering. Then, the rule manager obtains the set of rule
instantiations (i.e. the triggered rules).

3. Evaluation phase. Triggered rule’s conditions are eval-
uated through theevaluating all conditions method,
which, in turn, callsevaluating condition for each of
the rule instantiation. Those rule instantiations whose
conditions have been satisfied form the conflict set.

4. Scheduling phase. The conflict set is split up based on the
rule class (i.e. the concept supported), so that each subset
can be managed according to the requirements of each
concept (i.e. integrity maintenance, view support, etc.).
This situation is shown in Fig. 5 as a set of overlapping
rectangles. Each conflict set is passed as a parameter to
theschedulingmethod, which schedules and fires the rule

292

RULE
MANAGER

EVENT
DETECTOR MANAGER

EVENT

EVENT
COMPOSITE

INSTANCE INSTANTIATION
RULE

RULE
MANAGER

EVALUATING_CONDITION

INSTANTIATION
RULE

RULE
MANAGER

EXECUTING_ACTION

EVALUATING_ALL
CONDITIONS

TRIGGERINGSIGNAL SCHEDULING

CHECKING

Fig. 5. Rule processing as message interaction among objects

occurrences according to the specific semantics of their
classes. The order in which each conflict set is processed
depends on the priority of the rule class (i.e. thebefore
meta-attribute).

5. Execution phase. Firing a rule instantiation implies in-
voking theexecutingaction method. The order in which
each rule in the conflict set is fired depends on the pri-
ority of the rule instance (i.e. thepriority attribute). If,
during action execution, an event arises, then thesig-
nal method is invoked and a recursive call to the whole
process is initiated, i.e. cascade rule firing.

These steps are not necessarily executed sequentially,
but are dependent on the coupling modes chosen. In imple-
mentation terms, the event-condition coupling refers to when
the evaluatingall conditionsmethod is executed relative to
the end of thetriggering method, whereas the condition-
action coupling is concerned with when theexecutingaction
method is performed relative to the end of thescheduling
method. Since the coupling modes adopted depend on the
rule class, they cannot be hard-coded within the methods
themselves, since such couplings vary from rule class to
rule class in order to accommodate the semantics of the cor-
responding concept.

To overcome this problem, an approach similar to the
one proposed to support flexible control flow (Dayal et al.
1990) has been used. A rule can be seen as “coupling” the
method involved in the rule’s event and the methods which
appear in the action part. Since the basic execution model
functionality is supported by methods, and methods can be
invoked from rule conditions and actions, a cleaner and more
flexible way to support the coupling is through meta-rules.

Hence, the event-condition coupling realized as the cou-
pling between thetriggering and the evaluating all -
conditions methods and the condition-action coupling achiev-
ed as the coupling between thescheduling and theexecut-
ing action methods are obtained through meta-rules. For
instance, auser invoked event-condition coupling mode is
achieved by the following rule:

event:
sequence(event1([after,triggering,

rule_manager]),
event2([after,evaluate_rule_set,

RuleClass]))
condition:

true
action:

send evaluating_all_conditions
to rule_manager

The situation which causesevaluating all conditions to be
invoked is described as a sequence of two events:event1is
raised after successful completion of thetriggering method;
event2is produced byevaluate rule set, a special dummy
method which causes all rule instantiations ofRuleClass to
be evaluated. It is discretionarily used within the transaction.

As a further example, adeferred condition-action cou-
pling mode is obtained by the rule:

event:
sequence(abstract_event1([EventParams,

RuleTriggeringSet]),
EOT)

condition:
true

action:
for_each RuleOid in

RuleTriggeringSet do
...
send executing_action

to RuleOid
...

whereEOT signals the end of the transaction, andabstract-
event1 is an abstract event raised within thescheduling

method for each class of rule instantiation. The sequence of
these two events describes the situation whereexecuting
action is invoked. Therefore, the condition-action coupling
mode is not hard-coded in thescheduling method. In-
stead, thescheduling method indicates that the situation
ready-to-be-fired has been reached through raising the ab-
stract event,abstract event1. This event can then be com-
bined with nothing, anend of transaction event, or a
process rule set event to achieve an immediate, deferred,
or user-invoked coupling mode, respectively6.

Unlike in other approaches (e.g. ODE, CHIMERA) where
deferred rules are obtained by enlarging the rule’s event with
the end of transaction (EOT) event, in EXACT, instance
rules are preserved as defined by the user. Indeed, coupling
modes are seen as part of the rule class execution model
and supported as the “coupling” between the meta-methods
which implement the execution model of the rule class. Fur-
thermore, far fewer composite events need to be tracked.
As an example, consider a database with 60 deferred in-

6 A question could arise about how meta-rules themselves are supported.
The same mechanism (i.e. defining meta-meta-rules) cannot be used, else
an infinite loop would be provoked. Thus, meta-rules are grouped in the
systemrule class, where the meta-methods (e.g.triggering) are specialized.
Since the coupling modes for meta-rules are immediate, this specialization
consists of hard-coding coupling modes within the meta-methods (e.g. the
methodtriggering explicitly calls evaluatingall conditions).

293

tegrity constraints. In EXACT, only one composite event is
tracked, since all the deferred constraints are scheduled as a
set, whereas the traditional approach requires the monitoring
of 60 composite events.

5 Advantages of this approach: an example

In this section, an example is shown to illustrate the extent to
which the goal stated in the introduction, i.e. enhancing the
flexibility, declarativeness and extensibility of a rule system,
has been achieved.

The point to be noted is that now the designer can adapt
both the knowledge and execution model to reflect more ac-
curately the concept semantics. The designer should begin
by listing the requirements that the support of the concept
poses for both models, and then study what is new and what
can be re-used. As an example, this section shows how to
accommodate the requirements for integrity constraint main-
tenance.

The knowledge modelshould allow the description of
the integrity constraint to be monitored and the support for
both exceptions and compensating actions. The description
provided by the system, and kept in thegenericrule class,
can accommodate most of the requirements for defining in-
tegrity constraints. It has an event which can be any of
the updates potentially violating the constraint, a condition
where the constraint is validated, and an action which holds
the reaction to be followed if the constraint is violated. How-
ever some applications (Buchmann and Dayal 1988) also
need to specify exceptions, i.e. objects for which the in-
tegrity constraint does not apply. Such requirement can
be supported by specializinggenericrule into a subclass
integrity rule where a new attributedisabledfor is intro-
duced, which holds a list of the exceptional objects. More-
over, condition evaluation is extended to check whether
the object involved is among the exceptional objects. This
is achieved by redefining theevaluatingcondition method.
Figure 6 shows the EXACT definition for this rule class.

The execution model requirements are sketched in
Sect. 2.1 specifically,

– once a database update occurs which affects the con-
straint, the integrity checking can begin immediately. If
this is the desired behaviour, it can be reflected by as-
signing immediateas the value of thee-c coupling and
the c-a couplingattributes.

– all integrity constraints affected by a database update
should be checked in turn until one is falsified. This can
be accommodated by assigning the valuesall rules and
abort to the attributesschedulinganderror recoverymode,
respectively.

– if different integrity constraints have to be checked, an
order can be established based on the evaluation cost of
each constraint: the higher its cost, the lower its priority.
This is supported by assigning a function, which works
out the priority based on the complexity of a rule’s con-
dition and action, kept as a value of thepriority function
attribute. Rule’s complexity can be calculated from the
number of message-sending instructions which appear in
the condition and the action. This function is invoked at

new([integrity rule,[
is a([genericrule]),
e-c coupling([immediate]),
c-a coupling([immediate]),
scheduling mode([all fire]),
error recovery mode([abort]),
priority function([(...)]),
before([dynamic display rule]),

attribute(atttuple(
disabled for ,global,set,optional,object,[]

)),
method((

evaluating condition(global,[],[plog],plog,
[[Params],ConResult]) :- ...

))
)]] => rule manager.

new([deferredintegrity rule,[
is a([integrity rule]),
e-c coupling([deferred]),
c-a coupling([immediate]),
scheduling mode([all fire]),
error recovery mode([abort]),
priority function([(...)]),
before([statisticalrule])

)]] => rule manager.

Fig. 6. Extending EXACT with integrity rules

the rule’s creation time if no priority is explicitly given
by the user.

– since integrity rules have a higher priority as a whole
than, for example, dynamic-display rules, thebeforeat-
tribute will hold dynamicdisplayrule as its value.

– as for the conflict resolution strategy, only the rule’s
priority is considered, since no specific policy is given.

As shown in Fig. 6, theintegrity rule class keeps the val-
ues for these meta-attributes, which declaratively define the
execution model chosen. Broadly speaking, the knowledge
model is supported by attribute/method definitions, whereas
the execution model is described by values given to the meta-
attributes.

Now consider that deferred integrity constraints are also
required. These constraints exhibit the same knowledge
model and most of the features of the execution model of
the previous integrity rules. The only difference stems from
the event-condition coupling mode (i.e. thee-c couplingpa-
rameter) which now isdeferred. This can be supported by
defining a subclassdeferred integrity rule which inherits
the knowledge model of theintegrity rule class and speci-
fies its own execution model. Figure 6 shows this situation.
Notice that the condition-action coupling mode (i.e. thec-
a coupling attribute) is immediate, as the condition evalu-
ation is already deferred. Also, the concept-based priority
(i.e. thebeforeattribute) has been changed, since now the
potentially conflicting rules are those also evaluated at the
end of the transaction (e.g.statistical rules).

294

6 Related work

Dimensions of active behaviour are scarcely addressed in
the literature. Attempts to classify active systems have been
investigated in Paton et al. (1993) and Widom (1994). Paton
et al. (1993) provide a set of dimensions along which active
systems (both relational and object-oriented) can be classi-
fied, whereas Widom (1994) presents a comparison between
the active and deductive approach to rule support in database
systems.

However, little experience is reported on how to accom-
modate and explicitly support a given set of dimensions.
An exception is the work of Fraternali et al. (1994), where
a semantic model for active databases is proposed. Unlike
EXACT, rule management is only characterized by the cou-
pling mode. However, while EXACT presents a very simple
event management policy – where simple events are mainly
considered – Fraternali et al. consider two additional modes
of event handling: theconsumption modeand thenet ef-
fect mode. The former addresses what happens to events
after triggered rules have considered them: “are they ‘for-
gotten’, or can they still trigger the rule, or can they be
referred to in some subsequent consideration or execution
of the rule?” (Fraternali et al. 1994). Two options are con-
sidered:consuming, where events are no longer visible after
rule consideration, andpreserving, where events are kept vis-
ible after rule consideration. The issue of event consumption
policies is also addressed in the pioneering event language
SNOOP (Chakravarthy and Mishra 1991).

The net effect mode poses the question of what happens
if the triggering event of a rule is invalidated by some other
event before the rule has been considered. Either a rule is
triggered by the bare occurrence of an event, regardless of
what happens afterwards, or a rule triggering must be revised
to check for invalidating events (e.g. an update event occur-
rence and a posterior delete event occurrence on the same
object would result in no event occurrence at all). Similar
considerations used to determine the net effect are observed
by other active systems, e.g. Starburst.

The previous ideas are supported in the database lan-
guage Chimera (Ceri et al. 1996), where event-condition-
action rule syntax is extended with two keywords for the
user to specify the rule activation mode (i.e. coupling mode)
and the event-handling mode.

Rules in this context are later translated into an internal
format, where the coupling mode or the event consumption
policy are realized. For example, a deferred rule implies to
extend the internal rule event with anendof transaction-like
event, and also the internal rule condition extends the initial
condition to reflect the event consumption policy. By en-
coding these policies outside the initial rule, different event
consumption policies can be easily obtained by changing the
translating schemas.

By contrast, the EXACT approach relies on inheritance
to accommodate (i.e. specialize or override) the evolution of
the execution model, where dimensions are specified at the
class level, as opposed to Chimera, where it is given at the
rule level. And most important, EXACT allows rule sets to
co-exist with different execution strategies.

The need for flexible systems is also addressed in Hull
and Jacobs (1991), where it is stated that ‘it appears that dif-

ferent rule-application semantics will sometimes be appro-
priate even within a single database. . . It seems unlikely that
a fixed collection of choices will suffice however, specially
as active databases become increasingly sophisticated’. For
Hull and Jacobs (1991), the differences in semantics stem
from choices concerning when rules should be fired, how
they should be fired and how their effects should be com-
bined. Our work extends these dimensions and presents an
approach to realize such flexibility.

7 Conclusions

There are a growing number of applications that can be sup-
ported using event-driven behaviour. However, these appli-
cations are far from being uniform and thus impose different
requirements on both the knowledge model and the execu-
tion model. Therefore, a flexible rule system that is tailorable
to suit special requirements can be most useful.

Using rule objects to represent the knowledge model is
now current practice. However, the execution model is be-
ing embedded in the system code. This makes the execution
model difficult, if not impossible, to change or customize. In
this paper, an approach has been presented which supports
tailorable rule execution models in OODBs by using meta-
classes. Three main advantages stem from this approach:

– flexibility: different sets of rules can have different exe-
cution strategies, where each set supports a distinct ap-
plication (e.g. integrity constraint maintenance).

– declarativeness:easiness-of-use is enhanced by describ-
ing the rule execution model through a set of parameters.
In this way, the user just provides the parameters for each
dimension that best fit the concept requirements, and the
system customizes the appropriate methods to support
this execution model.

– extensibility:being supported as methods, the rule exe-
cution strategy can be easily extended by refining already
provided methods or introducing new ones.

Extensibility is achieved through metaclasses. This mech-
anism is not as extensible as other approaches, including
persistent languages or the use of a storage and optimizer
manager, because they let designers extend the data model
only, not the DBMS kernel. Thus, the extensibility of EX-
ACT is constricted for the underlying DBMS (e.g. the trans-
action mechanism). However, such systems are much eas-
ier for designers to use, because metaclasses let them use
the object-oriented data model to extend itself and avoid
the considerable coding involved with other approaches
(Dı́az and Paton 1994).

Modularity can be seen as a by-product of this approach.
Active DBMSs can be jeopardized if appropriate structuring
mechanism are not available to handle the increasing com-
plexity and number of rules than future active systems are
expected to hold. Similar problems to those found in artifi-
cial intelligence can be encountered, where deception among
production system practitioners is largely due to the lack
of structuring mechanisms available to cope with large rule
sets. The approach presented in this paper provides some
help, as active rules are grouped according to the function-
ality supported, where control can be customized to obtain
the desired requirements.

295

It is our experience that this approach greatly enhances
the rule system ability to cope with heterogeneous applica-
tions in active DBMSs.

Acknowledgements.We are in debt with Norman Paton for his help with
ADAM. The authors would like also to thank the ACT-NET colleagues for
fruitful discussions on active databases. This work has been supported by
the Department of Industry, Agriculture and Fishing of the Basque Govern-
ment under contract G295UN012. Active database research at San Sebastián
has benefited from funding from the EU Human Capital and Mobility Net-
work ACT-NET.

References

Aitken A, Widom J, Hellerstein J.M (1992) Behaviour of database produc-
tion rules: Termination, confluence, and observable determinism. In
Proc. ACM SIGMOD Intl. Conf. on Management of Data, pp 59–68

Bocca J (1991) MegaLog: A platform for developing knowledge base man-
agement systems. In Proc. 2nd. Intl. Symposium on Database Systems
for Advanced Applications (DASFAA’91)

Brownston L, Farrel R, Kant E, Martin N (1985) Programing Expert Sys-
tems in OPS5: An Introduction to Rule-Based programming. Addison-
Wesley, Reading, Mass.

Buchmann AP, Dayal U (1988) Constraint and exception handling for de-
sign, reliability and maintainability. In: Fulton RE (ed) Managing En-
gineering Data: Emerging Issues (ASME), pp 95–100

Ceri S, Fraternalli P, Paraboschi S, Branca L (1996) Active rule manage-
ment in Chimera. In: Widom and Cheri (1996)

Ceri S, Widom J (1990) Deriving production rules for constraint mainte-
nance. In: Proc. 16th Intl. Conf. in Very Large Data Bases. Morgan
Kaufman, San Mateo, Calif., pp 567–577

Chakravarthy S, Krishnaprasad V, Anwar E, Kim S-K (1994) Compos-
ite events for active databases: Semantics, contexts and detection. In:
Bocca J, Jarke M, Zaniolo C (eds) Proc. 20th Int. Conf. on Very Large
Data Bases.Morgan-Kaufmann, San Mateo, Calif., pp 606–617

Chakravarthy S, Mishra D (1991) An event specification language (SNOOP)
for active databases and its detection. Technical Report, University of
Florida

Dayal U (1989) Active database management systems. SIGMOD RECORD
18(3):150–169

Dayal U, Buchmann AP, McCarthy D.R (1988) Rules are objects too: A
knowledge model for an active object oriented database system. In:
Dittrich KR (ed) Proc. 2nd Intl. Workshop on OODBS. Springer, Berlin
Heidelberg New York, pp 129–143

Dayal U, Hsu M, Ladin R (1990) Organizing long-running activities with
triggers and transactions. In: Proc. ACM SIGMOD Intl. Conf. on Man-
agement of Data, pp 204–214

Dı́az O (1992) Deriving rules for constraint maintenance in an object-
oriented database. In: Ramos I, Tjoa AM (eds) Proc. Intl. Conf. on
Databases and Expert Systems DEXA. Springer, Berlin Heidelberg
New York, pp 332–337.

Dı́az O, Gray PMD, Paton N (1991) Rule management in object oriented
databases: a uniform approach. In: Sernadas A, Lohman GM, Camps
R (eds) Proc. 17th Intl. Conf. on Very Large Data Bases, Barcelona.
Morgan Kaufmann, San Mateo, Calif., pp 317–326

Dı́az O, Jaime A, Paton N, al Qaimari G (1994) Supporting dynamic dis-
plays using active rules. SIGMOD RECORD 23(1):21–26

Dı́az O, Paton N (1994) Extending ODBMS using Metaclasses. IEEE Soft-
ware 11(3):40–47

Etzion O (1993) Flexible consistency modes for active databases aplica-
tions. Information Systems 18(6):391–404

Fraternali P, Montesi D, Tanca L (1994) Active database semantics. In:
Proc. ADC’94 Fifth Australasian Database Conference. University of
Canterbury, New Zealand

Gatziu S, Dittrich K.R (1994) Events in an active object-oriented database.
In: Paton NW, Williams MH (eds) Proc. 1st Int. Workshop on Rules in
Database Systems. Springer, Berlin Heidelberg New York, pp 23–39

Gehani NH, Jagadish HV (1991) Ode as an active database: Constraints
and triggers. In: Sernadas A, Lohman GM, Camps R (eds) Proc. 17th
Intl. Conf. on Very Large Data Bases, Barcelona. Morgan Kaufmann,
San Mateo, Calif., pp 327–336

Gehani NH, Jagadish HV, Shmueli O (1992) Composite event specification
in active databases: Model and implementation. In: Proc. 18th Intl.
Conf. on Very Large Data Bases. Morgan Kaufmann, San Mateo, Calif.,
pp 327–338

Hammer M, McLeod D (1981) Database description with SDM: A Semantic
Database Model. ACM Transactions on Database Systems 6(3):351–
386

Hanson E.N, Widom J (1993) An overview of production rules in database
systems. Knowl Eng Rev 8(2):121–143

Hull R, Jacobs D (1991) Language constructs for programming active
databases. In: Sernadas A, Lohman GM, Camps R (eds), Proc. 17th
Intl. Conf on Very Large Data Bases, Barcelona. Morgan Kaufmann,
San Mateo, Calif., pp 455–467

Ioannidis Y.E, Sellis T.K (1992) Supporting inconsistent in database sys-
tems. J Intell Inf Syst 1(1):243–270

Medeiros C, Pfeffer P (1990) A mechanism for managing rules in an object-
oriented database. Technical report, Altair Technical Report

Paton N (1989) ADAM: An object-oriented database system implemented
in Prolog. In: Williams MH (ed) Proc. British National Conference on
Databases. Cambridge University Press, pp 147–161

Paton N, D́ıaz O, Williams MH, Campin J, Dinn A, Jaime A (1993) Di-
mensions of active behaviour. In: Williams M, Paton N (eds) Proc.
1st Intl. Workshop On Rules In Database Systems. Springer-Verlag,
Workshops in Computing series, pp 40–57.

Urban SD, Desiderio M (1991) Translating constraints to rules in CON-
TEXT: A CONstrainT EXplanation tool. In: Kent W, Meersman RA,
Khosla S (eds) Object-Oriented Databases: Analysis, Design and Con-
struction. North-Holland, Amsterdam, pp 373–392

Widom J (1994) Deductive and active databases: Two paradigms or ends
of a spectrum? In: Williams M, Paton N (eds) Proc. of the 1st Intl.
Workshop On Rules In Database Systems. Springer-Verlag, Workshops
in Computing series, pp 306–315

Widom J, Ceri S (eds) (1996) Active Database Systems. Morgan Kaufmann,
San Mateo, Calif.

Widom J, Finkelstein SJ (1990) Set-Oriented Production Rules in Relational
Database Systems. In: Proc. ACM SIGMOD Intl. Conf. on Manage-
ment of Data, pp 259–270

Widom J, Cochrane RJ, Lindsay BG (1991) Implementing set-oriented pro-
duction rules as an extension to starburst. In: Sernadas A, Lohman
GM, Camps R (eds) Proc. 17th Intl. Conf. on Very Large Data Bases,
Barcelona. Morgan Kaufmann, San Mateo, Calif., pp 275–286.

This article was processed by the author using the LaTEX style file pljour2
from Springer-Verlag.

